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Phonon-assisted Boltzmann kinetics of a Bose gas: Generic solution for<T,
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The relaxation kinetics of an ideal Bose gas coupled to a phonon bath at temperatures below or equal to the
critical temperaturel; is given within a unique scenario. During the first transient stage, which lasts a few
characteristic scattering times, the initial distribution disappears. The following nonexponential relaxation
towards a quantum degenerate equilibrium state with a Bose-Einstein condensate is a slow adiabatic process.
For this second kinetic stage we find analytic generic solutiorof the Boltzmann equation. The generic
solution is independent of the initial distribution and completely defined by the Tafi®, of the critical and
bath temperature$S1063-651X97)01906-3

PACS numbd(s): 05.30.Jp, 05.20.Dd, 71.35y

I. INTRODUCTION cally controlled Bose-Einstein statistics of orthoexcitons in
Cu,O has been reporteld 1]. Moreover, a possible Bose-
More than six decades ago, the Boltzmann kinetic equaEinstein condensation of paraexcitons inQuhas been ex-
tion was generalized to include quantum statisfitk Be- amined recently, both experimentall$2] and theoretically
cause the Boltzmann kinetics involves all of the microscopid13]. Simple estimates show that due to the small exciton
degrees of freedom simultaneously, an arbitrary initial distrifadius in C4O, the exciton-phonon interaction strongly
bution of particles usually evolves to the figuasjequilib- dpminates over the exciton-exciton scatterin.g for conc_entra-
rium state within a few characteristic scattering timegs. ~ HONS No< 107 cm_*3 (Te=<3 K). In the following analysis,
This general conclusion is valid for classical BoltzmannWe Use the notatiom in subscripts for a Bose particle exci--
gaseq 2], fermion system$§3], and boson systems &>T,  on, taking into account a possible reference to excitons in
[4]. However, the relaxation kinetics of Bose particles atCu20- _ . _ o
T<T, represents an important exception to this rule. The Thg Boltzmann equation, which desc_:rlbes the kinetics of
need to accumulate a macroscopic number of Bose particlésSpatially homogeneous system of excitoxgdoupled to a
in the ground-state mod@ose-Einstein condensatmakes ~bath of acoustic phonorigh), is given by
the kinetics rather unusual.
In this paper, we analyze the phonon-assisted relaxation g 2@ ) oh
kinetics of an ideal Bose gas &t<T.. This problem has ENk:_F% My ph(P=K)[H{[Nk(1+ {2 ) (1+Np)
been approached for two rather different realizations,

namely, the relaxation kinetics in the presence of a continu- —(1+ Nk)nEEpr] S(ex—ep—hwyg_p)
ously acting external source of bosd&s-8] or from a given N N
initial distribution[4,9]. In the first case, the final steady state + NP2 (1+Np) — (1+Ny)(1+nb2 )Np]

of an open thermodynamic system with a possible conden-
sate can indeed be reached within a few scattering times
Tsc. However, for a thermodynamically closed system of

bosons coupled to a bath, the conclusions are controversiathere e, =%2k?2M, andfiw,_=hvp—k| are the exci-
Bose-Einstein condensatigBEC) in the time scale ofr,,  ton and phonon energies, respectively; and th

X&(ek—ep-l-ﬁwp_k)}, (1)

~, are the
has been found in Ref9] using a Fokker-Planck equation, exciton and phonon occupation numbers, respectively;
while numerical simulationg4] show a considerable slowing M, ,((p—K) is the matrix element of the exciton-phonon
down of relaxation kinetics af<T.. Our main result, i.e., deformation potential interaction. The exciton-phonon cou-
the analytic generic solution for the phonon-assisted relaxpling is determined by |Mx_ph(p—k)|2=ﬁD2|p—k|/
ation kinetics of a closed Bose systemTa&T., clearly 2Vpvg, whereD is the deformation potentiaV/ is the crys-
indicates the existence of the slow adiabatic stage. Here wial volume, p is the crystal density, ands is the sound
have a unique example of the fundamental solution of thevelocity. The first(secondterm in the square brackets on the
Boltzmann kinetic equation that is insensitive to an initial right-hand side(rhs) of Eq. (1) is due to the Stokeganti-
distribution att=0. Stoke$ scattering of excitons from the modie

A gas of excitons in semiconductors becomes quantum For an isotropic initial distribution of excitons in momen-
statistically degenerate at relatively high temperaturegum space, the kinetic equatidh) reduces to the following
T~T,, due to the small exciton translational mass of theequation for the exciton distribution functid¥, in the one-
order of the free-electron ma$s0]. For example, an opti- dimensional energy space:
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d 4aD*M3v,
ENe_o=(Wﬁ—4; [Ne,(1+nE) —Neo(n&)—Ne,) 1.

4

Here the first term in the square brackets on the rhs describes
the population of the ground-state mode due to phonon-
assisted spontaneous emission from the partner sgte
while the second one characterizes the stimulated kinetics
proportional to the occupation numbed._,. Because
Ng—o— in the thermodynamic limit fol ,<T,, the stimu-
lated kinetics of Eq(4) is crucial for the development of
BEC of excitons. As recognized for the first time by Rlioh

for biological system$5], the phonon-assisted relaxation ki-
netics in the presence of a continuously acting external
source of bosons allows us to involve effectively the stimu-
FIG. 1. Energy diagram for the phonon-assisted relaxation intdated poEuIation of the ground-state mode. In this case, one

the ground-state modee=0 (left) and the distribution keepsngo—Neo<0 and stimulated BEC develops within a

Ne=Ng(7=226ry] in the adiabatic stage compared to the equilib- feyw scattering times,.. This general scheme has been sub-
rium distribution (dashed ling (right). Because ofey>kgTy, sequently explored for excitonic systefis8].

N:g<1 and the quantum degenerate statistics of excitons occurs at | the present work, we analyze the phonon-assisted re-
e<ey. laxation kinetics from a given initial distribution of excitons.
This case corresponds to the experimental conditions of Ref.
[12]. For T,>T,. an arbitrary initial distributionNg(t=0)

Vek

i __ ‘/M_XDZ J dey(e—ep)2{[N (1+nph ) relaxes within a few scattering times to a state with maxi-
at © 4¢§Wﬁ4vgp\/g 1 ! € €& mum entropy. According to thél theorem, the maximum
entropy is realized foN,=1/exgd(e—w)/T]—1, with an ef-
X(1+ Nel)—(1+ Ne)ngﬁelNel](qS— Je+ \/e_l) fective chemical potentigh and an effective temperatufie
[14]. In equilibrium, T=T,, u=u(ny,Ty) and the collision
X O(—qgs+ e+ e,)O(e—e)) integral vanishes. However, fof,<T. an anomalously
o slow, nonexponential kinetics occurs for the excitons at low-
+[Neng' (14 Ne) = (1+Ne) est energies. The ground-state made0 couples with the
. relatively high-energy partner stagg>T, only through the
X(1+ g ¢)Ne, 10 (das— Ve, +e) anti-Stokes scatteringsee Fig. 1 Physically, a “bottle-
neck” relaxation into the ground-state mo@e=0 occurs
XO(—gast Ve, +\e)0(e;—e)}, 2 becaus&,, very quickly approachelsgg during the thermal-

ization and suppresses the stimulated processes. The colli-
where © is the Heaviside function and ggas sion integral on the rhs of Eg4) with Neo—>n22 prevents an
=+(e—e;)/\V2M,v, refers to the momentum transfer of effective accumulation of a macroscopic number of excitons
Stokes and anti-Stokes scattering. In order to derive(®g. ate=0 and gives rise to the slow adiabatic stage of relax-
from Eqg. (1) one uses polar coordinates in momentum spacegtion. Furthermore, during the adiabatic kinetics only the
i.e., (Px.Py.P)—(P.¢,0) with p, along k, performs the low-energy excitons are far from equilibrium, i.e., without a
integration overd¢ and df, and makes the substitution condensate fraction, while a high-energy tail of the distribu-
Np=N._. . The phonon system is supposed to be in equition of excitons is in quasiequilibrium with the effective
librium atpthe bath temperaturg, : n22,=1/expﬁw/Tb)—1 chemical potentialu=0 and the effective temperature
settingks=1. T:Ir-:b;eéc:r (Illivzrgsbgfs)l a fundamental scenario of the
We define the characteristic scattering time by phonon-assisted relaxation kinetics a&T.. The kinetics
consists of a transient stage, which follows an initial distri-
ah? bution and lasts a few,., and the following slow adiabatic
Tsc=(m)[exp(eo/'rb)—l] (3)  stage. For the adiabatic stage, we construct an analytic ge-
xS neric solution of the phonon-assisted Boltzmann kinetics.

In Sec. lll we test the generic solution by straightforward
through the probability of anti-Stokes scattering from thenumerical evaluation of the kinetc E(R). The occupation
ground-sta’[e mod&=0 (|n energy space this mode corre- kinetics of the gl"ound-state mode=0 |S deSCfi.bEd analyti'
sponds tee=0) atT=T,. Heree,=2M 2 is the energy of cally. We also discuss how the generic solution approaches
the partner state coupled to the mdde0 by the resonant BEC of excitons.
emission or absorption of an acoustic phonon with momen-
tum pg (see Fig. L This partner state is determined by the
energy-momentum conservatieazthS/Zszhpovs.

According to Eq.(2), the phonon-assisted occupation of The bottleneck relaxation into the ground-state mode
the ground-state mode=0 is given by e=0, together with the need to accumulate at this mode a

II. GENERIC SOLUTION OF BOLTZMANN KINETICS
AT T<T,
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macroscopic number of excitons, is responsible for the slow- 1 () (U)oLt hom

ing down of the relaxation kinetics a,<T.. The low- Ne(T)ZTfO el VT Pine T Wdu+ N, (7). (6)
energy stateseseol4=Mxv§/2 couple only through anti-

Stokes scattering with the corresponding phonon-separatadlere the first term on the rhs is the inhomogeneous solution

partner modeg=ege, (see Fig. 1L Moreover, the bottleneck Nisnhom(T) and the homogeneous solution is given by
relaxation takes place for the all low-energy statesT, .

Similarly to the ground-state mode=0, for these modes NP 7)=C, er(” 7, (7
Ng%=T,/e>1, while the anti-Stokes partner states have the

high energies-e,>T, to be nondegenerate and to suppresgvhere C, are the integration constants independent of the
the stimulated relaxation due N,ezeO_,nph dimensionless timer. In Egs. (6) and (7), the function

e=ep " _ 2\ (T ’ ’ H
The high-energy states with nondegenerate statistic&(7) = (€o/Tp) J76T(')d7" determines the temperature law

Ne<1 equilibrate first. After a few scattering times, the Of (€ adiabatic stage

low-energy e€<e.<T,) and the high-energye(>¢;) exci- T2\ 4
tons form two subsystems weakly interacting through 5T(T)=(—b —p(7). (8
phonon-mediated scattering. Thietheorem[14], applied to €/ T

the high-energy excitons, yields a quasiequilibrium Planck
distribution Nese = 1/[exp@T)—1] with effective tempera-

ture T=T,+ 6T(t). The effective chemical potentidw of
the quasiequilibrated high-energy excitons can be neglect
because- su=[9.?(3/2)/167T ](6T)?< 8T for T=T, (in
comparison, Sux 8T for T>T.). Here {(3/2)=2.612 is
the Riemann zeta function. At this adiabatic stage o
the relaxation, the low-energy subsystem shrinks in energ
space[e,(t)—0], while the effective temperatur@ of
the high-energy excitons approaches the bath temperatuf%'
T, [8T(t)—0]. 0

The absence of the direct phonon-mediated interaction b / .
tween the low-energy excitons results in their slow adiabatic The conservation Of_ the t(_)tal conc_entra_nono
equilibration through the resonant coupling with the quasi-_Ne=e,+ Ne>e, Of the excitons during the adiabatic relax-
equilibrium statese~e,. It will be shown below that the ation yields the integral relationship
proposed scenario of the phonon-assisted relaxation kinetics
is justified by the numerical evaluation of the initial kinetic 1 (1 du Do L T\ ¥?

; — | PP — =32 | =—| -—-1]|.

equation(2). \/; o(1—u) \/G Ty

After the first transient relaxation, i.e., Bt At,,, the dis- 9)
tribution Ng(t) is still far from equilibrium for energies
e<e., wheree,=e,(t)<T, is the time-dependent critical Equation(9), which is the functional integral equation for
boundary of this nonequilibrium regiofsee Fig. 1L For p(7), attributes the final condensate fractiom.
these low-energy excitons witt<e, Eq. (2) reduces to =no[1—(T,/T.)*? to be spread in the nonequilibrium re-

gione<eg (7)) =e(7)/Tp<1.
In order to findp(7) from Eq.(9), we use the ansatz

The adiabatic stage of relaxation is mainly determined by
the inhomogeneous solutidM"™™7) of Eq. (5), i.e., by the
first term on the rhs of Eq6). The homogeneous solution

qqgom( 7), which refers to the very beginning of the adiabatic
stage atr=r7,=At, /71 through the integration con-
tantsC, , decays with respect t8""°"(7). It will be shown
after finding of the generic solution of E¢5) that indeed

Kihom 7y /NThem 7|~ 0. Physically, this denotes that

ring the slow adiabatic stage, which lasts a great number

Tsc, @ System of excitons loses correlations with the initial
eqistribution Ne(t=0).

J 5T(T)eo
Z7Ne=1-N, A ©) F(r)/F(ur)=A(u)\r+ 1/, (10)
whereF(7)=e”(" and A(u) is a unknown function. Equa-

_ — 41— . -1 -1 tion (10) provides a time-independence of the Ihs of EQ).
where e=e/T, and r=t[1-exp(-&/Tp)] "ree =tIrec>1 37 con qance with its rhs. Fou=1/7 in the interval

are the dimensionless energy and time, respectively. The fir ,
term on the rhs of the reduced kinetic equati@y stems E:Sfei tznd where Eqs(6) and (9) are defined, Eq(10)
e

from resonant phonon-assisted spontaneous emission to t
statee, while the second one describes the stimulated kinet- _

ics proportional to the distributioN, . For sT=0, Eq.(5) AL/7) \/EA(U)[PFA(UUT)]+A(1/UT)’ (3
yields atrue equilibrium distl’ibutiohl8= 1/e of the noncon- with the additional requiremem(l)zo_ The further expan-
densate excitons e(>0), i.e., Planck's functionNg?  sjon of the functionA around the inverse point t#+u+ e,
=1/[expk)—1] for e<e (7)=e€,(7)/T,<1. The tempera- wheree is an infinitesimal value, leads to

ture law 6T=6T(7) of the adiabatic cooling of the high-
energy excitons is still unknown.

The reduced kinetic equatiofd) is a linear differential
equation for the nonequilibrium distributioN.(7) of the
low-energy excitons. Formally, the complete solutionwherea=—A’(1). In the derivation of Eq.(12) we keep
N.(7) of Eq. (5) can be written as a sum of the homogeneousonly the leading term®(e) and neglect the smaller terms
and inhomogeneous contributions o(€?).

A’(u)+

“y 2 aw=-2 12
7 oy AW=—1, (12
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The solution of Eq.(12), which satisfies the condition
A(1)=0, is given by

A(Lr) = [ 12- 1], (13

Here the unknown parameter is determined through the
substitution of the solutiofl3) in Egs.(10) and (9) by

1 du T, 32
a_la_l fo(1_u)3/2[u_a_1/2_1]:§(3/2) T_b) _1}
(14
Finally, the functionp(7) is given by
p(1)=IN{[A(1/7)+ 1]V 7F(0)}, (15)

whereA(1/7) is determined by Eq.13) andF(0) is a posi-
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FIG. 2. Adiabatic cooling of the high-energy quasiequilibrium
excitons. Solid lines, numerical evaluation of E8); dashed lines,

tive constant. This constant drops out the final expressiongeneric law(16). Inset: a=a(T,/T.) as a numerical solution of

due to the combinatiop(7) — p(u7) presented in the inho-
mogeneous solutioN™™"(7) and Eq.(9). From Eqs.(8),

(15), and(13) one gets the fundamental law of the phonon-
assisted adiabatic cooling of the high-energy quasiequilib-

rium excitons:

N 1+ 2«
1+(12a)7 * V2

(16)

T2\ 1
5T(7'): e_o Z_l

With this law, the nonequilibrium distribution of the low-

Eq. (14).

o

124+ a
2+ al” DI

NP 7)=C,\/r 1+

(19

whereészcsF(O)zo is the renormalized integration con-
stant dependent on the initial distributiontat0. The homo-
geneous contributioN"®"(7) to the complete solutiot6) of
Eq. (5) decays withr with respect taN\""°"(7), as seen from

energy excitons is determined by the inhomogeneous soldhe comparison of Eqe17) and (19). For example, for the

tion of Eq.(5) as

NE(T)=TJ01

a7

T 12+ a

\/;

€

a\T

—7e(1—u)
1/2+ « € du

1
u—a—1/2_ 1)_|_ _
( Ju

7_3/2

12—«

e "d(1/2—a,3/12— a,Te)

+2\[§Dsw§>,

where® is the degenerate hypergeometric functi@b] and
Ds(x) = exp(—x?) [§dt exp(?) is Dawson’s integral16].
Equations(16) and (17) are thegeneric solutionof the

(1-e ™) 7

acoustic phonon-assisted Boltzmann kinetics of a Bose gas at
Tp<T.. This generic solution is completely defined by the
ratio T./T, of the critical and bath temperatures through the

parametere given by Eq.(14). Equation(14) has only one
solution 0= a<<1/2 for givenT./T, (see the inset of Fig.)2
For T,—T. (T,<T,.) the solutiona<1/2 can be approxi-
mated by

n., (18

( -
oyam,T,
wherea=0 for T,=T,. However, forT,—0 (a«—1/2), this
simple approximation of the parameterthrough the con-
densate fractiom. becomes invalid.

The homogeneous solutidt{°"( 7) of the reduced kinetic
Eq. (5) with p(7) of Eq. (15) is given by

1 TC 3/2
a= Z§(3/2)[(T—b) -1

ground-state mode one gets

N2(7) | 1/2—a\ 1 0 20

oC
N |\ v a) e 70 (20
Actually, the influence of the homogeneous solution

Ngom(f) on the total relaxation kinetics disappears already
during the first transient stage. Therefore, from an arbitrary
initial Ng(t=0), the following time-dependent distribution
of excitons approaches at 7, the generic solutiorl7) of

the adiabatic stage. The only information from an initial dis-
tribution, which influences the total kineticsB<T,, is the
durationAt;, of the first transient stage, typically a fewy..

Ill. DISCUSSION

In order to test the generic solutioil6) and (17) we
model the phonon-assisted relaxation of excitons within the
initial kinetic Eq. (2) reduced to the energy space. A homo-
geneous grid with 1200 points fafe is used to cover a close
vicinity of the ground-state mode=0 (the maximum value
of the dimensionless energy is,.=20). Equation(2) is
evaluated by a fourth-order Runge-Kutta integration routine
with the time step 0.01-0.65.. The calculations of the
phonon-assisted kinetics given in Figs. 2—4 take about 20
hours on an IBM Risk-6000 workstation.

For the numerical simulations we use the parameters of
para-excitons in CyO [17]. The numerical evaluations
within Eq. (2) of the relaxation kinetics af,<T, for various
initial distributions N,(7=0) completely confirm the ana-
lytic analysis namely, (i) the initial distribution of excitons
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FIG. 3. Evolution of the distributionga) ¥?N,(7) and (b)

N.(7) for the adiabatic stag@&imensionless unitsT.=T,). Solid FIG. 4. Evolution of the distributionga) e*2N(t) and (b)

lines, numerical evaluation of E(2); dashed lines, generic solution (t) for the adiabatic stage d,=1.5 K<T.=2 13e5 K (paraex-
. — e . c .

(17): 7=194(1), 582(2), 971(3), 1942(4), and 3884(S). citons in Cy,0, dimensional unitsy,.=22.1 n3. Solid lines, nu-

merical evaluation of Eq(2); dashed lines, generic solutidt?):
decays within a timer,=At, /7 of a few scattering pro- t=1 #s(1),3 us(2),5 us(3), and 8 us (4).
cesses(ii) after the initial transient kinetics, the high-energy

excitons withe=e (7= ) quasiequilibrate with an effec- ines only the durationt, of the first transient in the re-
tive u=0 and 0<ST/Ty<<1; (iii) for > 7, the effective  |5xation kinetics.

temperatureT=T,+ 6T(7) and the distribution function of The generic equatiofl?) yields the following adiabatic
the low-energy nonequilibrium excitons &) asymptoti-  kinetics for the ground-state moae=0:
cally approach the generic solutiqi6) and (17), respec-

tively, with @ given by Eq.(14).

The time dependencéT=4T(7) of the adiabatic ap-
proach of the effective temperatuiie=T,+ 6T(7) to the Ny—o(7)=27+
bath one are compared in Fig. 2 with the generic solution
(16) for variousT,<T,.. According to the numerical evalu-
ations of Eq.(2), the distribution of high-energy excitons
indeed follows the Planck function with=T,+ 6T(7) for
e=gq(7). In\/F_igs. 3a) and 3b) the time evolution of the
distributions\eN,(7) andN.(7) as a numerical solution of . : L
Eq. (2) is compared with the corresponding generic Solutionfl:_orlclTudes_tge marginal character of relaxation kinetics at
(17) for T,=T,.. The similar comparison foF,< T, is given b=Te (@=0),
in Figs. 4a) and 4b), where we use the dimensional energy
e and timet for paraexcitons in CyO. Again, Figs. 3 and 4 2
show that the derived fundamental soluti¢i6) and (17) 5T(7)=(E)i N, _o(7)=27 22
with « given by Eq.(14) reproduces quite well the adiabatic €) 27’ e=0 '
stage of the phonon-assisted relaxation kinetics. Moreover,
we have also checked that the adiabatic stage is insensitive to
the initial distribution att=0. The initial No(t=0) deter-  while for T,<T. (0<a<1/2)

o 3
1= a) ™ (21

The nonexponentiakelaxation into the ground-state mode
results in a strong slowing down of the entire phonon-
assisted kinetics. Furthermore, from E¢E6) and (17) one
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(1+a) is the &-like function with a continuously decreasing width
; proportional to 1te and [{1(7e,e)de=1. Therefore, from
Egs.(24), (25), and(18) we conclude that the generic solu-
tion (17) indeed evolves to the true equilibrium distribution
)7_3/2_ 23) NE9. Because the Dawson integral in EG7) is responsible
for the equilibrium distribution 1 at re—oo, in order to
adapt the fundamental solution to an arbitrary dimensionless
According to Eqs(22) and(23), the coefficient in asymp- energye, includinge=1, we should replace by e—1 in
totics of 6T(7—) has a jump atw=0 (T,=T.). More-  the last term of Eq(17).
over, the relaxation kinetics into the ground-state mode fol- Although the numerical results of Figs. 2—4 are adapted to
lows the different power laws &t,=T; andT,<T.. Both  the paraexcitons in G, the fundamental solutiofi16) and
the spontaneous and the stimulated relaxaftbe first and  (17) refers to the degenerate phonon-assisted Boltzmann ki-
the second term on the rhs of E@})] contribute equally netics of an arbitrary three-dimensional gas of ideal bosons
proportional to = to the ground-state kinetic$22) at  with quadratic dispersion. According to EAL7), VeN,—0
Tp=T,. In contrast, only the stimulated kinetics is respon-for ¢—0 and any givenr>0 [see also Figs. (@) and 4a)],
sible forN,_ o= 7°? at T,<T. For T,=T, the temperature \yhile \sN%c1/\/s o for 0. As a result, BEC into the
law (22) is identical to that which characterizes a critical ground-state mode builds up within the phonon-assisted ki-
slowing down of the thermodynamic relaxation6—Tc  petics only atr—c. This result is consistent with conclu-
from above Tp,>T). This critical slowing down of the ther-  gjons of Ref.[4]. Moreover, a genuine Bose-Einstein con-
modynamic_processes is a general feature of second-ordgénsate, which possesses such a nonlinear property as
phase transitionf18]. _ . N coherencefinally develops due to the conservative exciton-
According to Eg. (5), there is an instability kernel gxciton interaction Ref20]. Even for an arbitrary small but
e<eins(7)=(80/T}) 8T(7)<s(7), where the stimulated finjte, exciton-exciton interactiorl)y, a coherent region
kinetics increases the occupation numbigrssitive sign of ¢ <¢_, arises due to the strong accumulation of excitons at
the second term on the rhs of E&)]. In contrast, the stimu-  the close vicinity ofe=0. This coherent region, where the
lated processes depopulate the states in the energy ranggtential exciton-exciton interaction exceeds the correspond-
eins(7)<e<e(r). From Eq. (17) one derives ng kinetic energie®, of excitons, cannot be treated within
ec(7)=[1/7+al\7]/k, where the dimensionless parameterkinetic equation§20]. We can estimate a rise of the coherent
0< k<1 characterizes the relative deviationl‘d)&fC fromthe  stage by U= N.(7)=e,{7) as a condition for

E<Econ
equilibrium valueNi‘c‘ at e=¢g, and 7«>1. The collision ecoi{T) and 7= 7. For the equilibrium time-independent
integral of the Boltzmann kinetics contains the energy condistributions Ng this criterion indeed holds only for
servationd(e,—e,*fiw,_y) as a quasiclassical approxima- T,<T. whenu=0, i.e., the coherent region arises simulta-
tion. This approximation fails for the very low-energy exci- neously with the macro-occupation of the ground-state
tons [e<eg(t)], whereteg(t)<# (see the corresponding mode.
discussion in Ref[19]). From this time-energy uncertainty, For excitons in CyO the exciton-exciton interaction can
which breaks the classical Boltzmann kinetics forbe estimated adl,=4n#h2%a,/M,~=2.8x10 %2 eV cm®,
e<ep=egl/Ty, we findeg(7)=%A/7{Tp) Ty7. Accordingto  wherea,=7 A is the exciton Bohr radius. According to the
our estimatessg(7) <&l 7), €.0.,65=0.01g;,,; for the nu- numerical calculations, the criterion yields e,
merical calculations of Figs. 2—4. Foil {—T,)/T.<1 the  =2000-3000 scattering times for the rise of the coherent
three critical boundariesg(7)<ejs(7)<e(7) shrink in  stage. Our analysis of the phonon-assisted kinetics at
parallel, following the law(16) of the adiabatic cooling. T,<T, is valid only for 7< r.,,. However, the derived fun-
The final equilibrium distribution al,<T, is given by = damental solution is also important as the initial condition
N§q=(n0/\/g) 8(e)+1/e for e<1. The last term on the rhs for the coherent stage. The mutual synchronization of modes
of the generic solutiori17) yields the noncondensate Planck e<&c(7) breaks the random-phase approximation and
distribution at O<e<1, i.e., 2(/s)¥Ds(\re)—1/e for leads to coherence. This conservative process does not in-
re—c. On the other hand, the first term proportionaldo Volve modess> e [19,20.
on the rhs of Eq(17) describes the time evolution of the The generic solution for the adiabatic relaxation due to
condensate fractiom, towards the ground-state mode the exciton-exciton interaction is an intriguing question. Re-

£=0. For example, for & a<1/2 andre — one gets from  Cent numerical simulatior(g},21] of the approach to equilib-
Eq. (17 rium at T<T, through the exciton-exciton scattering give

some hints on the existence of such a solution. However, in
this case both the initial transient and the following adiabatic
N, (78—s00) = ( o 77) I(re,e)+ 1, (24) stage shoulgl be co_nsi(_derably shorter than for th_e consid_ered
Je phonon-assisted kinetics because the four-particle exciton-

exciton interaction is more effective than the three-particle
exciton-phonon coupling.

The exciton-excitonboson-bosonrelaxation kinetics in
the presence of a fermion bath has been examined in detail in
Ref.[19]. Although a critical slowing dowradiabatic stage
has been found foll,<T,, the derived solution is not a

Th

H(
o\ €0

6T(7) =

a

Ng-owhw(m_a

where

|(T£,8)=W[l—(78+1)e_w] (25
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generic one. This solution traces a kinetic evolution from thegeneral form and can be applied to a system of any bosons
particular initial Planck distribution with quadratic dispersion provided that relaxation kinetics is
Ne(t=0)=1/exp€/T,)—1, i.e., is a homogeneous solution determined by a three-particle interaction: boson plus bath
of the Boltzmann kinetics. However, a true generic solutionexcitation—boson. For example, the fundamental solutions
should be independent of the initial distribution and refers ta(16) and (17) can be easily adapted to the Rlich exciton—
an inhomogeneous solution of the exciton-exciton Boltz-LA-phonon interaction in polar semiconductorsvi{ g,
mann equation. «|p—kK|) or to LO—phonon-assisted relaxation kinetics.
(i) Our straightforward numerical modeling of the
IV. CONCLUSION phonon-assisted Boltzmann kineticsTat< T, provides evi-

, .dence for the proposed relaxation picture and the generic
In this work we develop the theory and evaluate numeri-so|utions(16) and (17).

cally the phonon-assisted Boltzmann kinetics of a degenerate
Bose gas. The following conclusions summarize our study.

(i) For T,<T,, the phonon-assisted relaxation kinetics is ACKNOWLEDGMENTS
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