
PHYSICAL REVIEW E JUNE 1997VOLUME 55, NUMBER 6
ARTICLES

Phonon-assisted Boltzmann kinetics of a Bose gas: Generic solution forT<Tc

A. L. Ivanov, C. Ell, and H. Haug
Institut für Theoretische Physik, J.W. Goethe Universita¨t Frankfurt, Robert-Mayer-Strasse 8, D-60054 Frankfurt, Germany

~Received 22 January 1997!

The relaxation kinetics of an ideal Bose gas coupled to a phonon bath at temperatures below or equal to the
critical temperatureTc is given within a unique scenario. During the first transient stage, which lasts a few
characteristic scattering times, the initial distribution disappears. The following nonexponential relaxation
towards a quantum degenerate equilibrium state with a Bose-Einstein condensate is a slow adiabatic process.
For this second kinetic stage we find ananalytic generic solutionof the Boltzmann equation. The generic
solution is independent of the initial distribution and completely defined by the ratioTc /Tb of the critical and
bath temperatures.@S1063-651X~97!01906-5#

PACS number~s!: 05.30.Jp, 05.20.Dd, 71.35.2y
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I. INTRODUCTION

More than six decades ago, the Boltzmann kinetic eq
tion was generalized to include quantum statistics@1#. Be-
cause the Boltzmann kinetics involves all of the microsco
degrees of freedom simultaneously, an arbitrary initial dis
bution of particles usually evolves to the final~quasi!equilib-
rium state within a few characteristic scattering timestsc.
This general conclusion is valid for classical Boltzma
gases@2#, fermion systems@3#, and boson systems atT@Tc
@4#. However, the relaxation kinetics of Bose particles
T<Tc represents an important exception to this rule. T
need to accumulate a macroscopic number of Bose part
in the ground-state mode~Bose-Einstein condensate! makes
the kinetics rather unusual.

In this paper, we analyze the phonon-assisted relaxa
kinetics of an ideal Bose gas atT<Tc . This problem has
been approached for two rather different realizatio
namely, the relaxation kinetics in the presence of a conti
ously acting external source of bosons@5–8# or from a given
initial distribution@4,9#. In the first case, the final steady sta
of an open thermodynamic system with a possible cond
sate can indeed be reached within a few scattering ti
tsc. However, for a thermodynamically closed system
bosons coupled to a bath, the conclusions are controver
Bose-Einstein condensation~BEC! in the time scale oftsc
has been found in Ref.@9# using a Fokker-Planck equation
while numerical simulations@4# show a considerable slowin
down of relaxation kinetics atT<Tc . Our main result, i.e.,
the analytic generic solution for the phonon-assisted re
ation kinetics of a closed Bose system atT<Tc , clearly
indicates the existence of the slow adiabatic stage. Here
have a unique example of the fundamental solution of
Boltzmann kinetic equation that is insensitive to an init
distribution att50.

A gas of excitons in semiconductors becomes quan
statistically degenerate at relatively high temperatu
T;Tc , due to the small exciton translational mass of t
order of the free-electron mass@10#. For example, an opti-
551063-651X/97/55~6!/6363~7!/$10.00
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cally controlled Bose-Einstein statistics of orthoexcitons
Cu2O has been reported@11#. Moreover, a possible Bose
Einstein condensation of paraexcitons in Cu2O has been ex-
amined recently, both experimentally@12# and theoretically
@13#. Simple estimates show that due to the small exci
radius in Cu2O, the exciton-phonon interaction strong
dominates over the exciton-exciton scattering for concen
tions n0<1017 cm23 (Tc<3 K!. In the following analysis,
we use the notationx in subscripts for a Bose particle exc
ton, taking into account a possible reference to excitons
Cu2O.

The Boltzmann equation, which describes the kinetics
a spatially homogeneous system of excitons (x) coupled to a
bath of acoustic phonons~ph!, is given by

]

]t
Nk52

2p

\2(
p

uMx-ph~p2k!u2$@Nk~11nk2p
ph !~11Np!

2~11Nk!nk2p
ph Np#d~ek2ep2\vk2p!

1@Nknp2k
ph ~11Np!2~11Nk!~11np2k

ph !Np#

3d~ek2ep1\vp2k!%, ~1!

whereek5\2k2/2Mx and \vp2k5\vsup2ku are the exci-
ton and phonon energies, respectively;Nk andnp2k

ph are the
exciton and phonon occupation numbers, respectiv
Mx-ph(p2k) is the matrix element of the exciton-phono
deformation potential interaction. The exciton-phonon co
pling is determined by uMx2ph(p2k)u25\D2up2ku/
2Vrvs , whereD is the deformation potential,V is the crys-
tal volume, r is the crystal density, andvs is the sound
velocity. The first~second! term in the square brackets on th
right-hand side~rhs! of Eq. ~1! is due to the Stokes~anti-
Stokes! scattering of excitons from the modek.

For an isotropic initial distribution of excitons in momen
tum space, the kinetic equation~1! reduces to the following
equation for the exciton distribution functionNe in the one-
dimensional energy space:
6363 © 1997 The American Physical Society
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]

]t
Ne52S AMxD

2

4A2p\4vs
4rAeD E de1~e2e1!

2$@Ne~11ne2e1
ph !

3~11Ne1
!2~11Ne!ne2e1

ph Ne1
#Q~qS2Ae1Ae1!

3Q~2qS1Ae1Ae1!Q~e2e1!

1@Nene12e
ph ~11Ne1

!2~11Ne!

3~11ne12e
ph !Ne1

#Q~qAS2Ae11Ae!

3Q~2qAS1Ae11Ae!Q~e12e!%, ~2!

where Q is the Heaviside function and qSuAS
56(e2e1)/A2Mxvs refers to the momentum transfer of
Stokes and anti-Stokes scattering. In order to derive Eq.~2!
from Eq.~1! one uses polar coordinates in momentum spac
i.e., (px ,py ,pz)→(p,f,u) with pz along k, performs the
integration overdf and du, and makes the substitution
Np5Ne5ep

. The phonon system is supposed to be in equ

librium at the bath temperatureTb : n\v
ph 51/exp(\v/Tb)21

settingkB51.
We define the characteristic scattering timetsc by

tsc5S p\4r

4D2Mx
3vs

D @exp~e0 /Tb!21# ~3!

through the probability of anti-Stokes scattering from th
ground-state modek50 ~in energy space this mode corre-
sponds toe50) atT5Tb . Heree052Mxvs

2 is the energy of
the partner state coupled to the modek50 by the resonant
emission or absorption of an acoustic phonon with mome
tum p0 ~see Fig. 1!. This partner state is determined by the
energy-momentum conservatione05\2p0

2/2Mx5\p0vs .
According to Eq.~2!, the phonon-assisted occupation o

the ground-state modee50 is given by

FIG. 1. Energy diagram for the phonon-assisted relaxation in
the ground-state modee50 ~left! and the distribution
Ne5Ne(t5226tsc) in the adiabatic stage compared to the equilib
rium distribution ~dashed line! ~right!. Because ofe0.kBTb ,
Ne0
eq!1 and the quantum degenerate statistics of excitons occurs

e!e0.
e,

i-

-

]

]t
Ne505S 4D2Mx

3vs
p\4r D @Ne0

~11ne0
ph!2Ne50~ne0

ph2Ne0
!#.

~4!

Here the first term in the square brackets on the rhs descr
the population of the ground-state mode due to phon
assisted spontaneous emission from the partner statee0,
while the second one characterizes the stimulated kine
proportional to the occupation numberNe50. Because
Ne50→` in the thermodynamic limit forTb<Tc , the stimu-
lated kinetics of Eq.~4! is crucial for the development o
BEC of excitons. As recognized for the first time by Fro¨hlich
for biological systems@5#, the phonon-assisted relaxation k
netics in the presence of a continuously acting exter
source of bosons allows us to involve effectively the stim
lated population of the ground-state mode. In this case,
keepsne0

ph2Ne0
,0 and stimulated BEC develops within

few scattering timestsc. This general scheme has been su
sequently explored for excitonic systems@7,8#.

In the present work, we analyze the phonon-assisted
laxation kinetics from a given initial distribution of excitons
This case corresponds to the experimental conditions of R
@12#. For Tb@Tc an arbitrary initial distributionNe(t50)
relaxes within a few scattering times to a state with ma
mum entropy. According to theH theorem, the maximum
entropy is realized forNe51/exp@(e2m)/T#21, with an ef-
fective chemical potentialm and an effective temperatureT
@14#. In equilibrium,T5Tb , m5m(n0 ,Tb) and the collision
integral vanishes. However, forTb<Tc an anomalously
slow, nonexponential kinetics occurs for the excitons at lo
est energies. The ground-state modee50 couples with the
relatively high-energy partner statee0.Tb only through the
anti-Stokes scattering~see Fig. 1!. Physically, a ‘‘bottle-
neck’’ relaxation into the ground-state modee50 occurs
becauseNe0

very quickly approachesne0
ph during the thermal-

ization and suppresses the stimulated processes. The
sion integral on the rhs of Eq.~4! with Ne0

→ne0
ph prevents an

effective accumulation of a macroscopic number of excito
at e50 and gives rise to the slow adiabatic stage of rel
ation. Furthermore, during the adiabatic kinetics only t
low-energy excitons are far from equilibrium, i.e., without
condensate fraction, while a high-energy tail of the distrib
tion of excitons is in quasiequilibrium with the effectiv
chemical potentialm50 and the effective temperatur
T5Tb1dT (1@dT/Tb.0).

In Sec. II we discuss a fundamental scenario of
phonon-assisted relaxation kinetics atT<Tc . The kinetics
consists of a transient stage, which follows an initial dist
bution and lasts a fewtsc, and the following slow adiabatic
stage. For the adiabatic stage, we construct an analytic
neric solution of the phonon-assisted Boltzmann kinetics

In Sec. III we test the generic solution by straightforwa
numerical evaluation of the kinetc Eq.~2!. The occupation
kinetics of the ground-state modee50 is described analyti-
cally. We also discuss how the generic solution approac
BEC of excitons.

II. GENERIC SOLUTION OF BOLTZMANN KINETICS
AT T<Tc

The bottleneck relaxation into the ground-state mo
e50, together with the need to accumulate at this mod

o
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macroscopic number of excitons, is responsible for the sl
ing down of the relaxation kinetics atTb<Tc . The low-
energy statese<e0 /45Mxvs

2/2 couple only through anti-
Stokes scattering with the corresponding phonon-separ
partner modese.e0 ~see Fig. 1!. Moreover, the bottleneck
relaxation takes place for the all low-energy statese!Tb .
Similarly to the ground-state modee50, for these modes
Ne
eq.Tb /e@1, while the anti-Stokes partner states have

high energies;e0.Tb to be nondegenerate and to suppre
the stimulated relaxation due toNe.e0

→ne.e0
ph .

The high-energy states with nondegenerate statis
Ne
eq!1 equilibrate first. After a few scattering times, th

low-energy (e<ec!Tb) and the high-energy (e.ec) exci-
tons form two subsystems weakly interacting throu
phonon-mediated scattering. TheH theorem@14#, applied to
the high-energy excitons, yields a quasiequilibrium Plan
distributionNe.ec

51/@exp(e/T)21# with effective tempera-

ture T5Tb1dT(t). The effective chemical potentialdm of
the quasiequilibrated high-energy excitons can be negle
because2dm.@9z2(3/2)/16pTc#(dT)

2!dT for T.Tc ~in
comparison,dm}dT for T@Tc). Here z(3/2).2.612 is
the Riemann zeta function. At this adiabatic stage
the relaxation, the low-energy subsystem shrinks in ene
space @ec(t)→0#, while the effective temperatureT of
the high-energy excitons approaches the bath tempera
Tb @dT(t)→0#.

The absence of the direct phonon-mediated interaction
tween the low-energy excitons results in their slow adiab
equilibration through the resonant coupling with the qua
equilibrium statese;e0. It will be shown below that the
proposed scenario of the phonon-assisted relaxation kin
is justified by the numerical evaluation of the initial kinet
equation~2!.

After the first transient relaxation, i.e., att>Dt tr , the dis-
tribution Ne(t) is still far from equilibrium for energies
e<ec , whereec5ec(t)!Tb is the time-dependent critica
boundary of this nonequilibrium region~see Fig. 1!. For
these low-energy excitons withe<ec Eq. ~2! reduces to

]

]t
N«512N«S «2

dT~t!e0
Tb
2 D , ~5!

where «5e/Tb and t5t@12exp(2e0 /Tb)#
21tsc

21.t/tsc.1
are the dimensionless energy and time, respectively. The
term on the rhs of the reduced kinetic equation~5! stems
from resonant phonon-assisted spontaneous emission t
state«, while the second one describes the stimulated kin
ics proportional to the distributionN« . For dT50, Eq. ~5!
yields a true equilibrium distributionN«51/« of the noncon-
densate excitons («.0), i.e., Planck’s function N«

eq

51/@exp(«)21# for «<«c(t)5ec(t)/Tb!1. The tempera-
ture law dT5dT(t) of the adiabatic cooling of the high
energy excitons is still unknown.

The reduced kinetic equation~5! is a linear differential
equation for the nonequilibrium distributionN«(t) of the
low-energy excitons. Formally, the complete soluti
N«(t) of Eq. ~5! can be written as a sum of the homogeneo
and inhomogeneous contributions
-
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N«~t!5tE
0

1

er~t!2r~ut!e2t«~12u!du1N«
hom~t!. ~6!

Here the first term on the rhs is the inhomogeneous solu
N«
inhom(t) and the homogeneous solution is given by

N«
hom~t!5C«e

r~t!2«t, ~7!

whereC« are the integration constants independent of
dimensionless timet. In Eqs. ~6! and ~7!, the function
r(t)5(e0 /Tb

2)*tdT(t8)dt8 determines the temperature la
of the adiabatic stage

dT~t!5S Tb2e0 D ]

]t
r~t!. ~8!

The adiabatic stage of relaxation is mainly determined
the inhomogeneous solutionN«

inhom(t) of Eq. ~5!, i.e., by the
first term on the rhs of Eq.~6!. The homogeneous solutio
N«
hom(t), which refers to the very beginning of the adiaba

stage att.t tr5Dt tr /tsc>1 through the integration con
stantsC« , decays with respect toN«

inhom(t). It will be shown
after finding of the generic solution of Eq.~5! that indeed
N«
hom(t)/N«

inhom(t)ut→`→0. Physically, this denotes tha
during the slow adiabatic stage, which lasts a great num
of tsc, a system of excitons loses correlations with the init
distributionNe(t50).

The conservation of the total concentrationn0
5n«<«c

1n«.«c
of the excitons during the adiabatic rela

ation yields the integral relationship

1

At
E
0

1 du

~12u!3/2Fer~t!2r~ut!2
1

AuG5z~3/2!F S TcTbD
3/2

21G .
~9!

Equation ~9!, which is the functional integral equation fo
r(t), attributes the final condensate fractionnc
5n0@12(Tb /Tc)

3/2# to be spread in the nonequilibrium re
gion «<«c(t)5ec(t)/Tb!1.

In order to findr(t) from Eq. ~9!, we use the ansatz

F~t!/F~ut!5A~u!At11/Au, ~10!

whereF(t)5er(t) andA(u) is a unknown function. Equa
tion ~10! provides a time-independence of the lhs of Eq.~9!
in accordance with its rhs. Foru51/t in the interval
0<u<1 and where Eqs.~6! and ~9! are defined, Eq.~10!
reduces to

A~1/t!5AutA~u!@11A~1/ut!#1A~1/ut!, ~11!

with the additional requirementA(1)50. The further expan-
sion of the functionA around the inverse point 1/t5u1e,
wheree is an infinitesimal value, leads to

A8~u!1Fau 1
1

2uGA~u!52
a

u
, ~12!

wherea52A8(1). In the derivation of Eq.~12! we keep
only the leading termso(e) and neglect the smaller term
o(e2).
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The solution of Eq.~12!, which satisfies the condition
A(1)50, is given by

A~1/t!5
a

a11
@ta11/221#. ~13!

Here the unknown parametera is determined through the
substitution of the solution~13! in Eqs.~10! and ~9! by

S a

a11D E01 du

~12u!3/2
@u2a21/221#5z~3/2!F S TcTbD

3/2

21G .
~14!

Finally, the functionr(t) is given by

r~t!5 ln$@A~1/t!11#AtF~0!%, ~15!

whereA(1/t) is determined by Eq.~13! andF(0) is a posi-
tive constant. This constant drops out the final express
due to the combinationr(t)2r(ut) presented in the inho
mogeneous solutionN«

inhom(t) and Eq.~9!. From Eqs.~8!,
~15!, and~13! one gets the fundamental law of the phono
assisted adiabatic cooling of the high-energy quasiequ
rium excitons:

dT~t!5S Tb2e0 D 12tF11
112a

11~1/2a!t2a21/2G . ~16!

With this law, the nonequilibrium distribution of the low
energy excitons is determined by the inhomogeneous s
tion of Eq. ~5! as

N«~t!5tE
0

1F aAt

1/21a
~u2a21/221!1

1

AuGe2t«~12u!du

5
aAt

1/21aF t3/2

1/22a
e2t«F~1/22a,3/22a,t«!

2
At

«
~12e2t«!G12At

«
Ds~At«!, ~17!

whereF is the degenerate hypergeometric function@15# and
Ds(x)5exp(2x2)*0

xdt exp(t2) is Dawson’s integral@16#.
Equations~16! and ~17! are thegeneric solutionof the

acoustic phonon-assisted Boltzmann kinetics of a Bose ga
Tb<Tc . This generic solution is completely defined by t
ratio Tc /Tb of the critical and bath temperatures through t
parametera given by Eq.~14!. Equation~14! has only one
solution 0<a,1/2 for givenTc /Tb ~see the inset of Fig. 2!.
For Tb→Tc (Tb<Tc) the solutiona!1/2 can be approxi-
mated by

a5
1

4
z~3/2!F S TcTbD

3/2

21G5S \2

2ApMxTb
D nc , ~18!

wherea50 for Tb5Tc . However, forTb→0 (a→1/2), this
simple approximation of the parametera through the con-
densate fractionnc becomes invalid.

The homogeneous solutionN«
hom(t) of the reduced kinetic

Eq. ~5! with r(t) of Eq. ~15! is given by
ns

-
-

u-

at

N«
hom~t!5C̃«AtF11

a

1/21a
~t1/21a21!G , ~19!

whereC̃«5C«F(0)>0 is the renormalized integration con
stant dependent on the initial distribution att50. The homo-
geneous contributionN«

hom(t) to the complete solution~6! of
Eq. ~5! decays witht with respect toN«

inhom(t), as seen from
the comparison of Eqs.~17! and ~19!. For example, for the
ground-state mode one gets

N«50
hom~t!

N«50
inhom~t!

U
t→`

}S 1/22a

1/21a D 1

t1/22aU
t→`

→0. ~20!

Actually, the influence of the homogeneous soluti
N«
hom(t) on the total relaxation kinetics disappears alrea

during the first transient stage. Therefore, from an arbitr
initial Ne(t50), the following time-dependent distributio
of excitons approaches att>t tr the generic solution~17! of
the adiabatic stage. The only information from an initial d
tribution, which influences the total kinetics atTb<Tc , is the
durationDt tr of the first transient stage, typically a fewtsc.

III. DISCUSSION

In order to test the generic solution~16! and ~17! we
model the phonon-assisted relaxation of excitons within
initial kinetic Eq. ~2! reduced to the energy space. A hom
geneous grid with 1200 points forA« is used to cover a close
vicinity of the ground-state mode«50 ~the maximum value
of the dimensionless energy is«max520). Equation~2! is
evaluated by a fourth-order Runge-Kutta integration rout
with the time step 0.01–0.05tsc. The calculations of the
phonon-assisted kinetics given in Figs. 2–4 take about
hours on an IBM Risk-6000 workstation.

For the numerical simulations we use the parameters
para-excitons in Cu2O @17#. The numerical evaluations
within Eq. ~2! of the relaxation kinetics atTb<Tc for various
initial distributionsN«(t50) completely confirm the ana
lytic analysis, namely,~i! the initial distribution of excitons

FIG. 2. Adiabatic cooling of the high-energy quasiequilibriu
excitons. Solid lines, numerical evaluation of Eq.~2!; dashed lines,
generic law~16!. Inset:a5a(Tb /Tc) as a numerical solution o
Eq. ~14!.
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decays within a timet tr5Dt tr /tsc of a few scattering pro-
cesses;~ii ! after the initial transient kinetics, the high-energ
excitons with«>«c(t>t tr) quasiequilibrate with an effec
tive m50 and 0,dT/Tb!1; ~iii ! for t.t tr , the effective
temperatureT5Tb1dT(t) and the distribution function o
the low-energy nonequilibrium excitons («<«c) asymptoti-
cally approach the generic solution~16! and ~17!, respec-
tively, with a given by Eq.~14!.

The time dependencedT5dT(t) of the adiabatic ap-
proach of the effective temperatureT5Tb1dT(t) to the
bath one are compared in Fig. 2 with the generic solut
~16! for variousTb<Tc . According to the numerical evalu
ations of Eq.~2!, the distribution of high-energy exciton
indeed follows the Planck function withT5Tb1dT(t) for
«>«c(t). In Figs. 3~a! and 3~b! the time evolution of the
distributionsA«N«(t) andN«(t) as a numerical solution o
Eq. ~2! is compared with the corresponding generic solut
~17! for Tb5Tc . The similar comparison forTb,Tc is given
in Figs. 4~a! and 4~b!, where we use the dimensional ener
e and timet for paraexcitons in Cu2O. Again, Figs. 3 and 4
show that the derived fundamental solution~16! and ~17!
with a given by Eq.~14! reproduces quite well the adiabat
stage of the phonon-assisted relaxation kinetics. Moreo
we have also checked that the adiabatic stage is insensiti
the initial distribution att50. The initial Ne(t50) deter-

FIG. 3. Evolution of the distributions~a! «1/2N«(t) and ~b!
N«(t) for the adiabatic stage~dimensionless units,Tc5Tb). Solid
lines, numerical evaluation of Eq.~2!; dashed lines, generic solutio
~17!: t5194 ~1!, 582 ~2!, 971 ~3!, 1942~4!, and 3884~5!.
n

n

r,
to

mines only the durationDt tr of the first transient in the re-
laxation kinetics.

The generic equation~17! yields the following adiabatic
kinetics for the ground-state mode«50:

N«50~t!52t1S a

1/22a D t3/2. ~21!

The nonexponentialrelaxation into the ground-state mod
results in a strong slowing down of the entire phono
assisted kinetics. Furthermore, from Eqs.~16! and ~17! one
concludes the marginal character of relaxation kinetics
Tb5Tc (a50),

dT~t!5S Tb2e0 D 12t
, N«50~t!52t, ~22!

while for Tb,Tc (0,a,1/2)

FIG. 4. Evolution of the distributions~a! e1/2Ne(t) and ~b!
Ne(t) for the adiabatic stage atTb51.5 K,Tc52.135 K ~paraex-
citons in Cu2O, dimensional units,tsc522.1 ns!. Solid lines, nu-
merical evaluation of Eq.~2!; dashed lines, generic solution~17!:
t51 ms ~1!, 3 ms ~2!, 5 ms ~3!, and 8 ms ~4!.
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dT~t!U
t→`

→S Tb2e0 D ~11a!

t
,

N«50~t!t→`→S a

1/22a D t3/2. ~23!

According to Eqs.~22! and~23!, the coefficient in asymp-
totics of dT(t→`) has a jump ata50 (Tb5Tc). More-
over, the relaxation kinetics into the ground-state mode
lows the different power laws atTb5Tc andTb,Tc . Both
the spontaneous and the stimulated relaxation@the first and
the second term on the rhs of Eq.~4!# contribute equally
proportional to t to the ground-state kinetics~22! at
Tb5Tc . In contrast, only the stimulated kinetics is respo
sible forN«50}t3/2 at Tb,Tc . For Tb5Tc the temperature
law ~22! is identical to that which characterizes a critic
slowing down of the thermodynamic relaxation ifTb→Tc
from above (Tb.Tc). This critical slowing down of the ther
modynamic processes is a general feature of second-o
phase transitions@18#.

According to Eq. ~5!, there is an instability kerne
«<« inst(t)5(e0 /Tb

2)dT(t)!«c(t), where the stimulated
kinetics increases the occupation numbers@positive sign of
the second term on the rhs of Eq.~5!#. In contrast, the stimu-
lated processes depopulate the states in the energy r
« inst(t),«<«c(t). From Eq. ~17! one derives
«c(t)5@1/t1a/At#/k, where the dimensionless parame
0,k,1 characterizes the relative deviation ofN«c

from the

equilibrium valueN«c

eq at «5«c and tk@1. The collision

integral of the Boltzmann kinetics contains the energy c
servationd(ek2ep6\vp2k) as a quasiclassical approxim
tion. This approximation fails for the very low-energy exc
tons @e<eB(t)#, where teB(t)<\ ~see the correspondin
discussion in Ref.@19#!. From this time-energy uncertainty
which breaks the classical Boltzmann kinetics f
«,«B5eB /Tb , we find«B(t)5\/tsc(Tb)Tbt. According to
our estimates,«B(t)!« inst(t), e.g.,«B.0.01« inst for the nu-
merical calculations of Figs. 2–4. For (Tc2Tb)/Tc!1 the
three critical boundaries«B(t)!« inst(t)!«c(t) shrink in
parallel, following the law~16! of the adiabatic cooling.

The final equilibrium distribution atTb<Tc is given by
N«
eq5(nc /A«)d(«)11/« for «!1. The last term on the rh

of the generic solution~17! yields the noncondensate Plan
distribution at 0,«!1, i.e., 2(t/«)1/2Ds(At«)→1/« for
t«→`. On the other hand, the first term proportional toa
on the rhs of Eq.~17! describes the time evolution of th
condensate fractionnc towards the ground-state mod
«50. For example, for 0<a!1/2 andt«→` one gets from
Eq. ~17!

N«~t«→`!5S aAp

A«
D I ~t«,«!11/«, ~24!

where

I ~t«,«!5
1

«~pt«!1/2
@12~t«11!e2t«# ~25!
l-

-

er

nge

r

-

is the d-like function with a continuously decreasing widt
proportional to 1/t« and*0

`I (t«,«)d«51. Therefore, from
Eqs.~24!, ~25!, and~18! we conclude that the generic solu
tion ~17! indeed evolves to the true equilibrium distributio
N«
eq. Because the Dawson integral in Eq.~17! is responsible

for the equilibrium distribution 1/« at t«→`, in order to
adapt the fundamental solution to an arbitrary dimension
energy«, including«>1, we should replace« by e«21 in
the last term of Eq.~17!.

Although the numerical results of Figs. 2–4 are adapted
the paraexcitons in Cu2O, the fundamental solution~16! and
~17! refers to the degenerate phonon-assisted Boltzmann
netics of an arbitrary three-dimensional gas of ideal bos
with quadratic dispersion. According to Eq.~17!, A«N«→0
for «→0 and any givent.0 @see also Figs. 3~a! and 4~a!#,
while A«N«

eq}1/A«→` for «→0. As a result, BEC into the
ground-state mode builds up within the phonon-assisted
netics only att→`. This result is consistent with conclu
sions of Ref.@4#. Moreover, a genuine Bose-Einstein co
densate, which possesses such a nonlinear propert
coherence, finally develops due to the conservative excito
exciton interaction Ref.@20#. Even for an arbitrary small bu
finite, exciton-exciton interactionU0, a coherent region
«,«coh arises due to the strong accumulation of excitons
the close vicinity of«50. This coherent region, where th
potential exciton-exciton interaction exceeds the correspo
ing kinetic energiesek of excitons, cannot be treated withi
kinetic equations@20#. We can estimate a rise of the cohere
stage by U0(«<«coh

N«(t)>«coh(t) as a condition for

«coh(t) and t5tcoh. For the equilibrium time-independen
distributions N«

eq this criterion indeed holds only fo
Tb<Tc whenm50, i.e., the coherent region arises simult
neously with the macro-occupation of the ground-st
mode.

For excitons in Cu2O the exciton-exciton interaction ca
be estimated asU054p\2ax /Mx.2.8310222 eV cm3,
whereax.7 Å is the exciton Bohr radius. According to th
numerical calculations, the criterion yieldstcoh
.200023000 scattering times for the rise of the cohere
stage. Our analysis of the phonon-assisted kinetics
Tb<Tc is valid only for t<tcoh. However, the derived fun-
damental solution is also important as the initial conditi
for the coherent stage. The mutual synchronization of mo
«<«coh(t) breaks the random-phase approximation a
leads to coherence. This conservative process does no
volve modes«.«coh @19,20#.

The generic solution for the adiabatic relaxation due
the exciton-exciton interaction is an intriguing question. R
cent numerical simulations@4,21# of the approach to equilib-
rium at T<Tc through the exciton-exciton scattering giv
some hints on the existence of such a solution. However
this case both the initial transient and the following adiaba
stage should be considerably shorter than for the consid
phonon-assisted kinetics because the four-particle exci
exciton interaction is more effective than the three-parti
exciton-phonon coupling.

The exciton-exciton~boson-boson! relaxation kinetics in
the presence of a fermion bath has been examined in deta
Ref. @19#. Although a critical slowing down~adiabatic stage!
has been found forTb,Tc , the derived solution is not a
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generic one. This solution traces a kinetic evolution from
particular initial Planck distribution
Ne(t50)51/exp(e/Tc)21, i.e., is a homogeneous solutio
of the Boltzmann kinetics. However, a true generic solut
should be independent of the initial distribution and refers
an inhomogeneous solution of the exciton-exciton Bo
mann equation.

IV. CONCLUSION

In this work we develop the theory and evaluate nume
cally the phonon-assisted Boltzmann kinetics of a degene
Bose gas. The following conclusions summarize our stud

~i! For Tb<Tc , the phonon-assisted relaxation kinetics
given by the following scenario: Within a few scatterin
timestsc, an initial distribution of Bose particles disappea
and the relaxation towards a quantum degenerate equilib
state with a Bose-Einstein condensate is a slow adiab
process. This second kinetic stage is described uniquel
the generic solutions~16! and ~17!. This result has a rathe
es
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tt
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general form and can be applied to a system of any bos
with quadratic dispersion provided that relaxation kinetics
determined by a three-particle interaction: boson plus b
excitation↔boson. For example, the fundamental solutio
~16! and~17! can be easily adapted to the Fro¨hlich exciton–
LA-phonon interaction in polar semiconductors (Mx-ph
}up2ku) or to LO–phonon-assisted relaxation kinetics.

~ii ! Our straightforward numerical modeling of th
phonon-assisted Boltzmann kinetics atTb<Tc provides evi-
dence for the proposed relaxation picture and the gen
solutions~16! and ~17!.
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