ARTICLES

Phonon-assisted Boltzmann kinetics of a Bose gas: Generic solution for $T \leq T_c$

A. L. Ivanov, C. Ell, and H. Haug

Institut fu¨r Theoretische Physik, J.W. Goethe Universita¨t Frankfurt, Robert-Mayer-Strasse 8, D-60054 Frankfurt, Germany

(Received 22 January 1997)

The relaxation kinetics of an ideal Bose gas coupled to a phonon bath at temperatures below or equal to the critical temperature T_c is given within a unique scenario. During the first transient stage, which lasts a few characteristic scattering times, the initial distribution disappears. The following nonexponential relaxation towards a quantum degenerate equilibrium state with a Bose-Einstein condensate is a slow adiabatic process. For this second kinetic stage we find an *analytic generic solution* of the Boltzmann equation. The generic solution is independent of the initial distribution and completely defined by the ratio T_c/T_b of the critical and bath temperatures. $[$1063-651X(97)01906-5]$

PACS number(s): 05.30.Jp, 05.20.Dd, 71.35. $-y$

I. INTRODUCTION

More than six decades ago, the Boltzmann kinetic equation was generalized to include quantum statistics $[1]$. Because the Boltzmann kinetics involves all of the microscopic degrees of freedom simultaneously, an arbitrary initial distribution of particles usually evolves to the final (quasi)equilibrium state within a few characteristic scattering times τ_{sc} . This general conclusion is valid for classical Boltzmann gases [2], fermion systems [3], and boson systems at $T \gg T_c$ [4]. However, the relaxation kinetics of Bose particles at $T \leq T_c$ represents an important exception to this rule. The need to accumulate a macroscopic number of Bose particles in the ground-state mode (Bose-Einstein condensate) makes the kinetics rather unusual.

In this paper, we analyze the phonon-assisted relaxation kinetics of an ideal Bose gas at $T \leq T_c$. This problem has been approached for two rather different realizations, namely, the relaxation kinetics in the presence of a continuously acting external source of bosons $[5-8]$ or from a given initial distribution $(4,9)$. In the first case, the final steady state of an open thermodynamic system with a possible condensate can indeed be reached within a few scattering times τ_{sc} . However, for a thermodynamically closed system of bosons coupled to a bath, the conclusions are controversial. Bose-Einstein condensation (BEC) in the time scale of $\tau_{\rm sc}$ has been found in Ref. $[9]$ using a Fokker-Planck equation, while numerical simulations $[4]$ show a considerable slowing down of relaxation kinetics at $T \leq T_c$. Our main result, i.e., the analytic generic solution for the phonon-assisted relaxation kinetics of a closed Bose system at $T \leq T_c$, clearly indicates the existence of the slow adiabatic stage. Here we have a unique example of the fundamental solution of the Boltzmann kinetic equation that is insensitive to an initial distribution at $t=0$.

A gas of excitons in semiconductors becomes quantum statistically degenerate at relatively high temperatures $T \sim T_c$, due to the small exciton translational mass of the order of the free-electron mass [10]. For example, an optically controlled Bose-Einstein statistics of orthoexcitons in $Cu₂O$ has been reported [11]. Moreover, a possible Bose-Einstein condensation of paraexcitons in $Cu₂O$ has been examined recently, both experimentally $\lceil 12 \rceil$ and theoretically [13]. Simple estimates show that due to the small exciton radius in $Cu₂O$, the exciton-phonon interaction strongly dominates over the exciton-exciton scattering for concentrations $n_0 \le 10^{17}$ cm⁻³ ($T_c \le 3$ K). In the following analysis, we use the notation x in subscripts for a Bose particle exciton, taking into account a possible reference to excitons in $Cu₂O.$

The Boltzmann equation, which describes the kinetics of a spatially homogeneous system of excitons (*x*) coupled to a bath of acoustic phonons (ph) , is given by

$$
\frac{\partial}{\partial t} N_{\mathbf{k}} = -\frac{2\pi}{\hbar^2} \sum_{\mathbf{p}} |M_{x-\mathbf{p}h}(\mathbf{p}-\mathbf{k})|^2 \{ [N_{\mathbf{k}}(1+n_{\mathbf{k}-\mathbf{p}}^{\text{ph}})(1+N_{\mathbf{p}}) - (1+N_{\mathbf{k}})n_{\mathbf{k}-\mathbf{p}}^{\text{ph}} N_{\mathbf{p}}] \delta(e_{\mathbf{k}} - e_{\mathbf{p}} - \hbar \omega_{\mathbf{k}-\mathbf{p}}) + [N_{\mathbf{k}}n_{\mathbf{p}-\mathbf{k}}^{\text{ph}}(1+N_{\mathbf{p}}) - (1+N_{\mathbf{k}})(1+n_{\mathbf{p}-\mathbf{k}}^{\text{ph}})N_{\mathbf{p}}] \times \delta(e_{\mathbf{k}} - e_{\mathbf{p}} + \hbar \omega_{\mathbf{p}-\mathbf{k}})\},
$$
\n(1)

where $e_k = \hbar^2 k^2 / 2M_x$ and $\hbar \omega_{\mathbf{p}-\mathbf{k}} = \hbar v_s |\mathbf{p}-\mathbf{k}|$ are the exciton and phonon energies, respectively; $N_{\bf k}$ and $n_{\bf p-k}^{\rm ph}$ are the exciton and phonon occupation numbers, respectively; $M_{x-ph}(\mathbf{p}-\mathbf{k})$ is the matrix element of the exciton-phonon deformation potential interaction. The exciton-phonon coupling is determined by $|M_{x-ph}(\mathbf{p}-\mathbf{k})|^2 = \hbar D^2 |\mathbf{p}-\mathbf{k}|/2$ $2V\rho v_s$, where *D* is the deformation potential, *V* is the crystal volume, ρ is the crystal density, and v_s is the sound velocity. The first (second) term in the square brackets on the right-hand side (rhs) of Eq. (1) is due to the Stokes (anti-Stokes) scattering of excitons from the mode **k**.

For an isotropic initial distribution of excitons in momentum space, the kinetic equation (1) reduces to the following equation for the exciton distribution function N_e in the onedimensional energy space:

FIG. 1. Energy diagram for the phonon-assisted relaxation into the ground-state mode $e=0$ (left) and the distribution $N_e = N_e(\tau = 226 \tau_{sc})$ in the adiabatic stage compared to the equilibrium distribution (dashed line) (right). Because of $e_0 > k_B T_b$, $N_{e_0}^{\text{eq}} \le 1$ and the quantum degenerate statistics of excitons occurs at $e \ll e_0$.

$$
\frac{\partial}{\partial t} N_e = -\left(\frac{\sqrt{M_x} D^2}{4\sqrt{2} \pi \hbar^4 v_s^4 \rho \sqrt{e}}\right) \int de_1(e - e_1)^2 \{[N_e (1 + n_{e - e_1}^{ph}) \times (1 + N_{e_1}) - (1 + N_e) n_{e - e_1}^{ph} N_{e_1}] \Theta(q_S - \sqrt{e} + \sqrt{e_1})
$$

$$
\times \Theta(-q_S + \sqrt{e} + \sqrt{e_1}) \Theta(e - e_1)
$$

$$
+ [N_e n_{e_1 - e}^{ph} (1 + N_{e_1}) - (1 + N_e)
$$

$$
\times (1 + n_{e_1 - e}^{ph}) N_{e_1}] \Theta(q_{AS} - \sqrt{e_1} + \sqrt{e})
$$

$$
\times \Theta(-q_{AS} + \sqrt{e_1} + \sqrt{e}) \Theta(e_1 - e)\}, \tag{2}
$$

where Θ is the Heaviside function and $q_{S|AS}$ $= \pm (e-e_1)/\sqrt{2M_yv_s}$ refers to the momentum transfer of Stokes and anti-Stokes scattering. In order to derive Eq. (2) from Eq. (1) one uses polar coordinates in momentum space, i.e., $(p_x, p_y, p_z) \rightarrow (p, \phi, \theta)$ with p_z along **k**, performs the integration over $d\phi$ and $d\theta$, and makes the substitution $N_p = N_{\epsilon=\epsilon_p}$. The phonon system is supposed to be in equilibrium at the bath temperature T_b : $n_{\hbar\omega}^{\text{ph}} = 1/\exp(\hbar\omega/T_b) - 1$ setting $k_B=1$.

We define the characteristic scattering time $\tau_{\rm sc}$ by

$$
\tau_{\rm sc} = \left(\frac{\pi \hbar^4 \rho}{4D^2 M_x^3 v_s}\right) \left[\exp(e_0/T_b) - 1\right]
$$
 (3)

through the probability of anti-Stokes scattering from the ground-state mode $k=0$ (in energy space this mode corresponds to $e=0$) at $T=T_b$. Here $e_0=2M_xv_s^2$ is the energy of the partner state coupled to the mode $k=0$ by the resonant emission or absorption of an acoustic phonon with momentum p_0 (see Fig. 1). This partner state is determined by the energy-momentum conservation $e_0 = \hbar^2 p_0^2 / 2M_x = \hbar p_0 v_s$.

According to Eq. (2) , the phonon-assisted occupation of the ground-state mode $e=0$ is given by

$$
\frac{\partial}{\partial t}N_{e=0} = \left(\frac{4D^2M_x^3v_s}{\pi\hbar^4\rho}\right)[N_{e_0}(1+n_{e_0}^{\text{ph}}) - N_{e=0}(n_{e_0}^{\text{ph}} - N_{e_0})].
$$
\n(4)

Here the first term in the square brackets on the rhs describes the population of the ground-state mode due to phononassisted spontaneous emission from the partner state e_0 , while the second one characterizes the stimulated kinetics proportional to the occupation number $N_{e=0}$. Because $N_{e=0} \rightarrow \infty$ in the thermodynamic limit for $T_b \le T_c$, the stimulated kinetics of Eq. (4) is crucial for the development of BEC of excitons. As recognized for the first time by Fröhlich for biological systems $[5]$, the phonon-assisted relaxation kinetics in the presence of a continuously acting external source of bosons allows us to involve effectively the stimulated population of the ground-state mode. In this case, one keeps $n_{e_0}^{\hat{p}_0 - N_{e_0}} < 0$ and stimulated BEC develops within a few scattering times τ_{sc} . This general scheme has been subsequently explored for excitonic systems $(7,8)$.

In the present work, we analyze the phonon-assisted relaxation kinetics from a given initial distribution of excitons. This case corresponds to the experimental conditions of Ref. [12]. For $T_b \gg T_c$ an arbitrary initial distribution $N_e(t=0)$ relaxes within a few scattering times to a state with maximum entropy. According to the *H* theorem, the maximum entropy is realized for $N_e = 1/\exp[(e-\mu)/T]-1$, with an effective chemical potential μ and an effective temperature T [14]. In equilibrium, $T = T_b$, $\mu = \mu(n_0, T_b)$ and the collision integral vanishes. However, for $T_b \le T_c$ an anomalously slow, nonexponential kinetics occurs for the excitons at lowest energies. The ground-state mode $e=0$ couples with the relatively high-energy partner state e_0 > T_b only through the anti-Stokes scattering (see Fig. 1). Physically, a "bottleneck'' relaxation into the ground-state mode $e=0$ occurs because N_{e_0} very quickly approaches $n_{e_0}^{\text{ph}}$ during the thermalization and suppresses the stimulated processes. The collision integral on the rhs of Eq. (4) with $N_{e_0} \rightarrow n_{e_0}^{\text{ph}}$ prevents an effective accumulation of a macroscopic number of excitons at $e=0$ and gives rise to the slow adiabatic stage of relaxation. Furthermore, during the adiabatic kinetics only the low-energy excitons are far from equilibrium, i.e., without a condensate fraction, while a high-energy tail of the distribution of excitons is in quasiequilibrium with the effective chemical potential $\mu=0$ and the effective temperature $T = T_b + \delta T (1 \geq \delta T / T_b > 0).$

In Sec. II we discuss a fundamental scenario of the phonon-assisted relaxation kinetics at $T \leq T_c$. The kinetics consists of a transient stage, which follows an initial distribution and lasts a few $\tau_{\rm sc}$, and the following slow adiabatic stage. For the adiabatic stage, we construct an analytic generic solution of the phonon-assisted Boltzmann kinetics.

In Sec. III we test the generic solution by straightforward numerical evaluation of the kinetc Eq. (2) . The occupation kinetics of the ground-state mode $e=0$ is described analytically. We also discuss how the generic solution approaches BEC of excitons.

II. GENERIC SOLUTION OF BOLTZMANN KINETICS AT $T \leq T_c$

The bottleneck relaxation into the ground-state mode $e=0$, together with the need to accumulate at this mode a macroscopic number of excitons, is responsible for the slowing down of the relaxation kinetics at $T_b \le T_c$. The lowenergy states $e \le e_0 / 4 = M_x v_s^2 / 2$ couple only through anti-Stokes scattering with the corresponding phonon-separated partner modes $e \approx e_0$ (see Fig. 1). Moreover, the bottleneck relaxation takes place for the all low-energy states $e \ll T_b$. Similarly to the ground-state mode $e=0$, for these modes $N_e^{\text{eq}} \approx T_b / e \gg 1$, while the anti-Stokes partner states have the high energies $\sim e_0$ $\geq T_b$ to be nondegenerate and to suppress the stimulated relaxation due to $N_{e \approx e_0} \rightarrow n_{e \approx e_0}^{\text{ph}}$.

The high-energy states with nondegenerate statistics N_e^{eq} = 1 equilibrate first. After a few scattering times, the low-energy ($e \leq e_c \leq T_b$) and the high-energy ($e > e_c$) excitons form two subsystems weakly interacting through phonon-mediated scattering. The H theorem [14], applied to the high-energy excitons, yields a quasiequilibrium Planck distribution $N_{e > e_c} = 1/[\exp(e/T) - 1]$ with effective temperature $T = T_b + \delta T(t)$. The effective chemical potential $\delta \mu$ of the quasiequilibrated high-energy excitons can be neglected because $-\delta\mu \approx [9\zeta^2(3/2)/16\pi T_c](\delta T)^2 \ll \delta T$ for $T \approx T_c$ (in comparison, $\delta \mu \propto \delta T$ for $T \gg T_c$). Here $\zeta(3/2) \approx 2.612$ is the Riemann zeta function. At this adiabatic stage of the relaxation, the low-energy subsystem shrinks in energy space $[e_c(t) \rightarrow 0]$, while the effective temperature *T* of the high-energy excitons approaches the bath temperature T_b $[\delta T(t) \rightarrow 0]$.

The absence of the direct phonon-mediated interaction between the low-energy excitons results in their slow adiabatic equilibration through the resonant coupling with the quasiequilibrium states $e \sim e_0$. It will be shown below that the proposed scenario of the phonon-assisted relaxation kinetics is justified by the numerical evaluation of the initial kinetic equation (2) .

After the first transient relaxation, i.e., at $t \geq \Delta t_{tr}$, the distribution $N_e(t)$ is still far from equilibrium for energies $e \leq e_c$, where $e_c = e_c(t) \leq T_b$ is the time-dependent critical boundary of this nonequilibrium region (see Fig. 1). For these low-energy excitons with $e \leq e_c$ Eq. (2) reduces to

$$
\frac{\partial}{\partial \tau} N_{\varepsilon} = 1 - N_{\varepsilon} \left(\varepsilon - \frac{\delta T(\tau) e_0}{T_b^2} \right),\tag{5}
$$

where $\varepsilon = e/T_b$ and $\tau = t[1 - \exp(-e_0/T_b)]^{-1} \tau_{sc}^{-1} \approx t/\tau_{sc} > 1$ are the dimensionless energy and time, respectively. The first term on the rhs of the reduced kinetic equation (5) stems from resonant phonon-assisted spontaneous emission to the state ε , while the second one describes the stimulated kinetics proportional to the distribution N_{ϵ} . For $\delta T=0$, Eq. (5) yields a true equilibrium distribution $N_ε = 1/e$ of the noncondensate excitons ($\varepsilon > 0$), i.e., Planck's function $N_{\varepsilon}^{\text{eq}}$ $=1/[\exp(\varepsilon)-1]$ for $\varepsilon \leq \varepsilon_c(\tau) = e_c(\tau)/T_b \leq 1$. The temperature law $\delta T = \delta T(\tau)$ of the adiabatic cooling of the highenergy excitons is still unknown.

The reduced kinetic equation (5) is a linear differential equation for the nonequilibrium distribution $N_ε(\tau)$ of the low-energy excitons. Formally, the complete solution $N_s(\tau)$ of Eq. (5) can be written as a sum of the homogeneous and inhomogeneous contributions

$$
N_{\varepsilon}(\tau) = \tau \int_0^1 e^{\rho(\tau) - \rho(u\tau)} e^{-\tau \varepsilon (1-u)} du + N_{\varepsilon}^{\text{hom}}(\tau). \tag{6}
$$

Here the first term on the rhs is the inhomogeneous solution $N_{\varepsilon}^{\text{inhom}}(\tau)$ and the homogeneous solution is given by

$$
N_{\varepsilon}^{\text{hom}}(\tau) = C_{\varepsilon} e^{\rho(\tau) - \varepsilon \tau},\tag{7}
$$

where C_{ε} are the integration constants independent of the dimensionless time τ . In Eqs. (6) and (7), the function $\rho(\tau) = (e_0 / T_b^2) \int^{\tau} \delta T(\tau') d\tau'$ determines the temperature law of the adiabatic stage

$$
\delta T(\tau) = \left(\frac{T_b^2}{e_0}\right) \frac{\partial}{\partial \tau} \rho(\tau). \tag{8}
$$

The adiabatic stage of relaxation is mainly determined by the inhomogeneous solution $N_e^{\text{inhom}}(\tau)$ of Eq. (5), i.e., by the first term on the rhs of Eq. (6) . The homogeneous solution $N_{\varepsilon}^{\text{hom}}(\tau)$, which refers to the very beginning of the adiabatic stage at $\tau \approx \tau_{tr} = \Delta t_{tr} / \tau_{sc} \ge 1$ through the integration constants C_{ε} , decays with respect to $N_{\varepsilon}^{\text{inhom}}(\tau)$. It will be shown after finding of the generic solution of Eq. (5) that indeed $N_{\varepsilon}^{\text{hom}}(\tau)/N_{\varepsilon}^{\text{inhom}}(\tau)|_{\tau\to\infty}\to 0$. Physically, this denotes that during the slow adiabatic stage, which lasts a great number of $\tau_{\rm sc}$, a system of excitons loses correlations with the initial distribution $N_e(t=0)$.

The conservation of the total concentration n_0 $=n_{\varepsilon \leq \varepsilon_c} + n_{\varepsilon > \varepsilon_c}$ of the excitons during the adiabatic relaxation yields the integral relationship

$$
\frac{1}{\sqrt{\tau}} \int_0^1 \frac{du}{(1-u)^{3/2}} \left[e^{\rho(\tau) - \rho(ux)} - \frac{1}{\sqrt{u}} \right] = \zeta(3/2) \left[\left(\frac{T_c}{T_b} \right)^{3/2} - 1 \right].
$$
\n(9)

Equation (9) , which is the functional integral equation for $\rho(\tau)$, attributes the final condensate fraction n_c $=n_0[1-(T_b/T_c)^{3/2}]$ to be spread in the nonequilibrium region $\varepsilon \leq \varepsilon_c(\tau) = e_c(\tau)/T_b \leq 1$.

In order to find $\rho(\tau)$ from Eq. (9), we use the ansatz

$$
F(\tau)/F(u\,\tau) = A(u)\sqrt{\tau} + 1/\sqrt{u},\tag{10}
$$

where $F(\tau) = e^{\rho(\tau)}$ and $A(u)$ is a unknown function. Equation (10) provides a time-independence of the lhs of Eq. (9) in accordance with its rhs. For $u=1/\tau$ in the interval $0 \le u \le 1$ and where Eqs. (6) and (9) are defined, Eq. (10) reduces to

$$
A(1/\tau) = \sqrt{u \tau} A(u) [1 + A(1/u \tau)] + A(1/u \tau), \quad (11)
$$

with the additional requirement $A(1)=0$. The further expansion of the function *A* around the inverse point $1/\tau = u + \epsilon$, where ϵ is an infinitesimal value, leads to

$$
A'(u) + \left[\frac{\alpha}{u} + \frac{1}{2u}\right]A(u) = -\frac{\alpha}{u},\tag{12}
$$

where $\alpha = -A'(1)$. In the derivation of Eq. (12) we keep only the leading terms $o(\epsilon)$ and neglect the smaller terms $o(\epsilon^2)$.

The solution of Eq. (12) , which satisfies the condition $A(1)=0$, is given by

$$
A(1/\tau) = \frac{\alpha}{\alpha + 1} \left[\tau^{\alpha + 1/2} - 1 \right]. \tag{13}
$$

Here the unknown parameter α is determined through the substitution of the solution (13) in Eqs. (10) and (9) by

$$
\left(\frac{\alpha}{\alpha+1}\right) \int_0^1 \frac{du}{(1-u)^{3/2}} \left[u^{-\alpha-1/2} - 1\right] = \zeta(3/2) \left[\left(\frac{T_c}{T_b}\right)^{3/2} - 1 \right].
$$
\n(14)

Finally, the function $\rho(\tau)$ is given by

$$
\rho(\tau) = \ln\{[A(1/\tau) + 1]\sqrt{\tau}F(0)\},\tag{15}
$$

where $A(1/\tau)$ is determined by Eq. (13) and $F(0)$ is a positive constant. This constant drops out the final expressions due to the combination $\rho(\tau) - \rho(u\tau)$ presented in the inhomogeneous solution $N_e^{\text{inhom}}(\tau)$ and Eq. (9). From Eqs. (8), (15) , and (13) one gets the fundamental law of the phononassisted adiabatic cooling of the high-energy quasiequilibrium excitons:

$$
\delta T(\tau) = \left(\frac{T_b^2}{e_0}\right) \frac{1}{2\tau} \left[1 + \frac{1 + 2\alpha}{1 + (1/2\alpha)\tau^{-\alpha - 1/2}}\right].
$$
 (16)

With this law, the nonequilibrium distribution of the lowenergy excitons is determined by the inhomogeneous solution of Eq. (5) as

$$
N_{\varepsilon}(\tau) = \tau \int_0^1 \left[\frac{\alpha \sqrt{\tau}}{1/2 + \alpha} (u^{-\alpha - 1/2} - 1) + \frac{1}{\sqrt{u}} \right] e^{-\tau \varepsilon (1 - u)} du
$$

$$
= \frac{\alpha \sqrt{\tau}}{1/2 + \alpha} \left[\frac{\tau^{3/2}}{1/2 - \alpha} e^{-\tau \varepsilon} \Phi(1/2 - \alpha, 3/2 - \alpha, \tau \varepsilon) - \frac{\sqrt{\tau}}{\varepsilon} (1 - e^{-\tau \varepsilon}) \right] + 2 \sqrt{\frac{\tau}{\varepsilon}} Ds(\sqrt{\tau \varepsilon}), \qquad (17)
$$

where Φ is the degenerate hypergeometric function [15] and $Ds(x) = \exp(-x^2) \int_0^x dt \exp(t^2)$ is Dawson's integral [16].

Equations (16) and (17) are the *generic solution* of the acoustic phonon-assisted Boltzmann kinetics of a Bose gas at $T_b \leq T_c$. This generic solution is completely defined by the ratio T_c/T_b of the critical and bath temperatures through the parameter α given by Eq. (14). Equation (14) has only one solution $0 \le \alpha \le \frac{1}{2}$ for given T_c/T_b (see the inset of Fig. 2). For $T_b \rightarrow T_c$ ($T_b \le T_c$) the solution $\alpha \le 1/2$ can be approximated by

$$
\alpha = \frac{1}{4}\zeta(3/2)\left[\left(\frac{T_c}{T_b}\right)^{3/2} - 1\right] = \left(\frac{\hbar^2}{2\sqrt{\pi}M_xT_b}\right)n_c\,,\qquad(18)
$$

where $\alpha = 0$ for $T_b = T_c$. However, for $T_b \rightarrow 0$ ($\alpha \rightarrow 1/2$), this simple approximation of the parameter α through the condensate fraction n_c becomes invalid.

The homogeneous solution $N_e^{\text{hom}}(\tau)$ of the reduced kinetic Eq. (5) with $\rho(\tau)$ of Eq. (15) is given by

FIG. 2. Adiabatic cooling of the high-energy quasiequilibrium excitons. Solid lines, numerical evaluation of Eq. (2) ; dashed lines, generic law (16). Inset: $\alpha = \alpha (T_b / T_c)$ as a numerical solution of Eq. (14) .

$$
N_{\varepsilon}^{\text{hom}}(\tau) = \widetilde{C}_{\varepsilon} \sqrt{\tau} \left[1 + \frac{\alpha}{1/2 + \alpha} (\tau^{1/2 + \alpha} - 1) \right],\tag{19}
$$

where $\overline{C}_s = C_s F(0) \ge 0$ is the renormalized integration constant dependent on the initial distribution at $t=0$. The homogeneous contribution $N_{\varepsilon}^{\text{hom}}(\tau)$ to the complete solution (6) of Eq. (5) decays with τ with respect to $N_e^{\text{inhom}}(\tau)$, as seen from the comparison of Eqs. (17) and (19) . For example, for the ground-state mode one gets

$$
\left. \frac{N_{\varepsilon=0}^{\text{hom}}(\tau)}{N_{\varepsilon=0}^{\text{inhom}}(\tau)} \right|_{\tau \to \infty} \propto \left(\frac{1/2 - \alpha}{1/2 + \alpha} \right) \frac{1}{\tau^{1/2 - \alpha}} \Big|_{\tau \to \infty} \to 0. \tag{20}
$$

Actually, the influence of the homogeneous solution $N_{\varepsilon}^{\text{hom}}(\tau)$ on the total relaxation kinetics disappears already during the first transient stage. Therefore, from an arbitrary initial $N_e(t=0)$, the following time-dependent distribution of excitons approaches at $\tau \ge \tau_{tr}$ the generic solution (17) of the adiabatic stage. The only information from an initial distribution, which influences the total kinetics at $T_b \leq T_c$, is the duration Δt_{tr} of the first transient stage, typically a few τ_{sc} .

III. DISCUSSION

In order to test the generic solution (16) and (17) we model the phonon-assisted relaxation of excitons within the initial kinetic Eq. (2) reduced to the energy space. A homogeneous grid with 1200 points for $\sqrt{\varepsilon}$ is used to cover a close vicinity of the ground-state mode $\varepsilon = 0$ (the maximum value of the dimensionless energy is ε_{max} =20). Equation (2) is evaluated by a fourth-order Runge-Kutta integration routine with the time step $0.01-0.05\tau_{sc}$. The calculations of the phonon-assisted kinetics given in Figs. 2–4 take about 20 hours on an IBM Risk-6000 workstation.

For the numerical simulations we use the parameters of para-excitons in Cu₂O [17]. *The numerical evaluations* within Eq. (2) of the relaxation kinetics at $T_b \le T_c$ for various initial distributions $N_s(\tau=0)$ *completely confirm the analytic analysis*, namely, (i) the initial distribution of excitons

FIG. 3. Evolution of the distributions (a) $\varepsilon^{1/2} N_{\varepsilon}(\tau)$ and (b) $N_ε(τ)$ for the adiabatic stage (dimensionless units, $T_c=T_b$). Solid lines, numerical evaluation of Eq. (2) ; dashed lines, generic solution $(17): \tau=194$ (1), 582 (2), 971 (3), 1942 (4), and 3884 (5).

decays within a time $\tau_{tr} = \Delta t_{tr} / \tau_{sc}$ of a few scattering processes; (ii) after the initial transient kinetics, the high-energy excitons with $\varepsilon \geq \varepsilon_c$ ($\tau \geq \tau_{tr}$) quasiequilibrate with an effective $\mu=0$ and $0<\delta T/T_b\ll 1$; (iii) for $\tau>\tau_{tr}$, the effective temperature $T = T_b + \delta T(\tau)$ and the distribution function of the low-energy nonequilibrium excitons ($\varepsilon \leq \varepsilon_c$) asymptotically approach the generic solution (16) and (17) , respectively, with α given by Eq. (14).

The time dependence $\delta T = \delta T(\tau)$ of the adiabatic approach of the effective temperature $T = T_b + \delta T(\tau)$ to the bath one are compared in Fig. 2 with the generic solution (16) for various $T_b \le T_c$. According to the numerical evaluations of Eq. (2) , the distribution of high-energy excitons indeed follows the Planck function with $T = T_b + \delta T(\tau)$ for $\varepsilon \geq \varepsilon_c(\tau)$. In Figs. 3(a) and 3(b) the time evolution of the distributions $\sqrt{\epsilon N_{\epsilon}(\tau)}$ and $N_{\epsilon}(\tau)$ as a numerical solution of Eq. (2) is compared with the corresponding generic solution (17) for $T_b = T_c$. The similar comparison for $T_b < T_c$ is given in Figs. $4(a)$ and $4(b)$, where we use the dimensional energy *e* and time *t* for paraexcitons in Cu₂O. Again, Figs. 3 and 4 show that the derived fundamental solution (16) and (17) with α given by Eq. (14) reproduces quite well the adiabatic stage of the phonon-assisted relaxation kinetics. Moreover, we have also checked that the adiabatic stage is insensitive to the initial distribution at $t=0$. The initial $N_e(t=0)$ deter-

FIG. 4. Evolution of the distributions (a) $e^{1/2}N_e(t)$ and (b) $N_e(t)$ for the adiabatic stage at T_b =1.5 K T_c =2.135 K (paraexcitons in Cu₂O, dimensional units, $\tau_{\rm sc}$ =22.1 ns). Solid lines, numerical evaluation of Eq. (2) ; dashed lines, generic solution (17) : $t=1$ μs (1), 3 μs (2), 5 μs (3), and 8 μs (4).

mines only the duration Δt_{tr} of the first transient in the relaxation kinetics.

The generic equation (17) yields the following adiabatic kinetics for the ground-state mode $\varepsilon = 0$:

$$
N_{\varepsilon=0}(\tau) = 2\,\tau + \left(\frac{\alpha}{1/2 - \alpha}\right)\tau^{3/2}.\tag{21}
$$

The *nonexponential* relaxation into the ground-state mode results in a strong slowing down of the entire phononassisted kinetics. Furthermore, from Eqs. (16) and (17) one concludes the marginal character of relaxation kinetics at $T_b = T_c (\alpha = 0),$

$$
\delta T(\tau) = \left(\frac{T_b^2}{e_0}\right) \frac{1}{2\tau}, \quad N_{\varepsilon = 0}(\tau) = 2\tau,
$$
 (22)

while for $T_b < T_c$ (0 $< \alpha < 1/2$)

$$
\delta T(\tau) \Big|_{\tau \to \infty} \to \left(\frac{T_b^2}{e_0}\right) \frac{(1+\alpha)}{\tau},
$$

$$
N_{\varepsilon=0}(\tau)_{\tau \to \infty} \to \left(\frac{\alpha}{1/2-\alpha}\right) \tau^{3/2}.
$$
 (23)

According to Eqs. (22) and (23) , the coefficient in asymptotics of $\delta T(\tau \rightarrow \infty)$ has a jump at $\alpha = 0$ ($T_b = T_c$). Moreover, the relaxation kinetics into the ground-state mode follows the different power laws at $T_b = T_c$ and $T_b < T_c$. Both the spontaneous and the stimulated relaxation [the first and the second term on the rhs of Eq. (4) contribute equally proportional to τ to the ground-state kinetics (22) at $T_b = T_c$. In contrast, only the stimulated kinetics is responsible for $N_{\epsilon=0} \propto \tau^{3/2}$ at $T_b < T_c$. For $T_b = T_c$ the temperature law (22) is identical to that which characterizes a critical slowing down of the thermodynamic relaxation if $T_b \rightarrow T_c$ from above $(T_b > T_c)$. This critical slowing down of the thermodynamic processes is a general feature of second-order phase transitions $[18]$.

According to Eq. (5) , there is an instability kernel $\epsilon \leq \epsilon_{\text{inst}}(\tau) = (e_0 / T_b^2) \delta T(\tau) \leq \epsilon_c(\tau)$, where the stimulated kinetics increases the occupation numbers [positive sign of the second term on the rhs of Eq. (5) . In contrast, the stimulated processes depopulate the states in the energy range $\varepsilon_{inst}(\tau) \leq \varepsilon \leq \varepsilon_c(\tau)$. From Eq. (17) one derives $\varepsilon_c(\tau) = [1/\tau + \alpha/\sqrt{\tau}]/\kappa$, where the dimensionless parameter $0<\kappa<1$ characterizes the relative deviation of N_{ε} from the equilibrium value $N_{\varepsilon_c}^{\text{eq}}$ at $\varepsilon = \varepsilon_c$ and $\tau \kappa \gg 1$. The collision integral of the Boltzmann kinetics contains the energy conservation $\delta(e_{\mathbf{k}}-e_{\mathbf{p}}\pm\hbar\omega_{\mathbf{p}-\mathbf{k}})$ as a quasiclassical approximation. This approximation fails for the very low-energy excitons $[e \leq e_B(t)]$, where $te_B(t) \leq \hbar$ (see the corresponding discussion in Ref. [19]). From this time-energy uncertainty, which breaks the classical Boltzmann kinetics for $\epsilon \leq \epsilon_B = \epsilon_B / T_b$, we find $\epsilon_B(\tau) = \hbar / \tau_{sc}(T_b) T_b \tau$. According to our estimates, $\varepsilon_B(\tau) \ll \varepsilon_{\text{inst}}(\tau)$, e.g., $\varepsilon_B \approx 0.01 \varepsilon_{\text{inst}}$ for the numerical calculations of Figs. 2–4. For $(T_c - T_b)/T_c \le 1$ the three critical boundaries $\varepsilon_B(\tau) \ll \varepsilon_{\text{inst}}(\tau) \ll \varepsilon_c(\tau)$ shrink in parallel, following the law (16) of the adiabatic cooling.

The final equilibrium distribution at $T_b \le T_c$ is given by $N_{\varepsilon}^{\text{eq}} = (n_c/\sqrt{\varepsilon})\,\delta(\varepsilon) + 1/\varepsilon$ for $\varepsilon \ll 1$. The last term on the rhs of the generic solution (17) yields the noncondensate Planck distribution at $0 \le \varepsilon \le 1$, i.e., $2(\tau/\varepsilon)^{1/2}Ds(\sqrt{\tau \varepsilon}) \rightarrow 1/\varepsilon$ for $\tau \varepsilon \rightarrow \infty$. On the other hand, the first term proportional to α on the rhs of Eq. (17) describes the time evolution of the condensate fraction n_c towards the ground-state mode $\varepsilon = 0$. For example, for $0 \le \alpha \le 1/2$ and $\tau \varepsilon \rightarrow \infty$ one gets from Eq. (17)

$$
N_{\varepsilon}(\tau \varepsilon \to \infty) = \left(\frac{\alpha \sqrt{\pi}}{\sqrt{\varepsilon}}\right) I(\tau \varepsilon, \varepsilon) + 1/\varepsilon, \tag{24}
$$

where

$$
I(\tau \varepsilon, \varepsilon) = \frac{1}{\varepsilon (\pi \tau \varepsilon)^{1/2}} [1 - (\tau \varepsilon + 1) e^{-\tau \varepsilon}] \tag{25}
$$

is the δ -like function with a continuously decreasing width proportional to $1/\tau \varepsilon$ and $\int_0^\infty I(\tau \varepsilon, \varepsilon) d\varepsilon = 1$. Therefore, from Eqs. (24) , (25) , and (18) we conclude that the generic solution (17) indeed evolves to the true equilibrium distribution $N_{\varepsilon}^{\text{eq}}$. Because the Dawson integral in Eq. (17) is responsible for the equilibrium distribution $1/\varepsilon$ at $\tau \varepsilon \rightarrow \infty$, in order to adapt the fundamental solution to an arbitrary dimensionless energy ε , including $\varepsilon \ge 1$, we should replace ε by $e^{\varepsilon}-1$ in the last term of Eq. (17) .

Although the numerical results of Figs. 2–4 are adapted to the paraexcitons in $Cu₂O$, the fundamental solution (16) and (17) refers to the degenerate phonon-assisted Boltzmann kinetics of an arbitrary three-dimensional gas of ideal bosons with quadratic dispersion. According to Eq. (17), $\sqrt{\varepsilon N_{\varepsilon}} \rightarrow 0$ for $\varepsilon \rightarrow 0$ and any given $\tau > 0$ [see also Figs. 3(a) and 4(a)], while $\sqrt{\varepsilon}N_{\varepsilon}^{\text{eq}} \propto 1/\sqrt{\varepsilon} \to \infty$ for $\varepsilon \to 0$. As a result, BEC into the ground-state mode builds up within the phonon-assisted kinetics only at $\tau \rightarrow \infty$. This result is consistent with conclusions of Ref. [4]. Moreover, a genuine Bose-Einstein condensate, which possesses such a nonlinear property as *coherence*, finally develops due to the conservative excitonexciton interaction Ref. $[20]$. Even for an arbitrary small but finite, exciton-exciton interaction U_0 , a coherent region $\epsilon < \epsilon_{coh}$ arises due to the strong accumulation of excitons at the close vicinity of $\varepsilon=0$. This coherent region, where the potential exciton-exciton interaction exceeds the corresponding kinetic energies e_k of excitons, cannot be treated within kinetic equations $[20]$. We can estimate a rise of the coherent stage by $U_0 \Sigma_{\varepsilon \le \varepsilon_{\rm coh}} N_{\varepsilon}(\tau) \ge \varepsilon_{\rm coh}(\tau)$ as a condition for $\varepsilon_{coh}(\tau)$ and $\tau=\tau_{coh}$. For the equilibrium time-independent distributions $N_{\varepsilon}^{\text{eq}}$ this criterion indeed holds only for $T_b \le T_c$ when $\mu = 0$, i.e., the coherent region arises simultaneously with the macro-occupation of the ground-state mode.

For excitons in $Cu₂O$ the exciton-exciton interaction can be estimated as $U_0 = 4\pi\hbar^2 a_x / M_x \approx 2.8 \times 10^{-22}$ eV cm³, where $a_x \approx 7$ Å is the exciton Bohr radius. According to the numerical calculations, the criterion yields τ_{coh} \approx 2000–3000 scattering times for the rise of the coherent stage. Our analysis of the phonon-assisted kinetics at $T_b \le T_c$ is valid only for $\tau \le \tau_{coh}$. However, the derived fundamental solution is also important as the initial condition for the coherent stage. The mutual synchronization of modes $\varepsilon \leq \varepsilon_{coh}(\tau)$ breaks the random-phase approximation and leads to coherence. This conservative process does not involve modes $\varepsilon > \varepsilon_{coh}$ [19,20].

The generic solution for the adiabatic relaxation due to the exciton-exciton interaction is an intriguing question. Recent numerical simulations $[4,21]$ of the approach to equilibrium at $T \leq T_c$ through the exciton-exciton scattering give some hints on the existence of such a solution. However, in this case both the initial transient and the following adiabatic stage should be considerably shorter than for the considered phonon-assisted kinetics because the four-particle excitonexciton interaction is more effective than the three-particle exciton-phonon coupling.

The exciton-exciton (boson-boson) relaxation kinetics in the presence of a fermion bath has been examined in detail in $Ref. [19]$. Although a critical slowing down (adiabatic stage) has been found for $T_b < T_c$, the derived solution is not a generic one. This solution traces a kinetic evolution from the particular initial Planck distribution $N_e(t=0) = 1/\exp(e/T_c) - 1$, i.e., is a homogeneous solution of the Boltzmann kinetics. However, a true generic solution should be independent of the initial distribution and refers to an inhomogeneous solution of the exciton-exciton Boltzmann equation.

IV. CONCLUSION

In this work we develop the theory and evaluate numerically the phonon-assisted Boltzmann kinetics of a degenerate Bose gas. The following conclusions summarize our study.

(i) For $T_b \le T_c$, the phonon-assisted relaxation kinetics is given by the following scenario: Within a few scattering times $\tau_{\rm sc}$, an initial distribution of Bose particles disappears and the relaxation towards a quantum degenerate equilibrium state with a Bose-Einstein condensate is a slow adiabatic process. This second kinetic stage is described uniquely by the generic solutions (16) and (17) . This result has a rather

[1] E.A. Uehling and G.E. Uhlenbeck, Phys. Rev. 108, 1175 $(1932).$

- [2] T. Koga, *Introduction to Kinetic Theory Stochastic Processes* in Gaseous Systems (Pergamon, Oxford, 1970).
- [3] H. Haug and A.-P. Jauho, *Quantum Kinetics in Transport and Optics of Semiconductors*, Springer Series of Solid-State Sciences Vol. 123 (Springer, Berlin, 1996).
- [4] D.W. Snoke and J.P. Wolfe, Phys. Rev. B 39, 4030 (1989).
- [5] H. Fröhlich, Inst. J. Quantum Chem. 2, 641 (1968); Phys. Lett. **26A**, 402 (1968).
- $[6]$ N.G. Duffield, J. Phys. A $21, 625$ (1988).
- [7] S.G. Tikhodeev, Solid State Commun. **72**, 1075 (1989); Zh. Eksp. Teor. Fiz. 97, 681 (1990) [Sov. Phys. JETP 70, 380 $(1991).$
- [8] A. Imamoglu, R.J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996).
- [9] M. Inoue and E. Hanamura, J. Phys. Soc. Jpn. 41, 771 (1976).
- [10] S.A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 4, 276 (1962) [Sov. Phys. Solid State Phys. 4, 199 (1962)]; J.M. Blatt, K.W. Böer, and W. Brandt, Phys. Rev. 126, 1691 (1962).
- [11] D. Hulin, A. Mysyrowicz, and C. Benoît à la Guillaume, Phys. Rev. Lett. **45**, 1970 (1980).
- [12] D.W. Snoke, J.P. Wolfe, and A. Mysyrowicz, Phys. Rev. Lett. **64**, 2543 (1990); Phys. Rev. B 41, 11 171 (1990); J.L. Lin and J.P. Wolfe, Phys. Rev. Lett. **71**, 1222 (1993); A. Mysyrowicz,

general form and can be applied to a system of any bosons with quadratic dispersion provided that relaxation kinetics is determined by a three-particle interaction: boson plus bath excitation↔boson. For example, the fundamental solutions (16) and (17) can be easily adapted to the Fröhlich exciton– LA-phonon interaction in polar semiconductors $(M_{x-\text{ph}})$ \propto $|\mathbf{p}-\mathbf{k}|$) or to LO–phonon-assisted relaxation kinetics.

(ii) Our straightforward numerical modeling of the phonon-assisted Boltzmann kinetics at $T_b \le T_c$ provides evidence for the proposed relaxation picture and the generic solutions (16) and (17) .

ACKNOWLEDGMENTS

We appreciate valuable discussions with L.V. Keldysh, N. Nagasawa, and M. Hasuo. This work has been supported by the DFG-Schwerpunktprogramm "Quantenkohaïrenz in Halbleitern'' and by the NATO Collaborative Research Grant No. 930084.

E. Benson, and E. Fortin, *ibid.* **77**, 896 (1996).

- [13] G.M. Kavoulakis, G. Baym, and J.P. Wolfe, Phys. Rev. B 53, 7227 (1996).
- [14] L.D. Landau and E.M. Lifshitz, *Course of Theoretical Physics* (Pergamon, Oxford, 1970), Vol. 5, Chap. 54.
- [15] I.S. Gradshteyn and I.M. Ryzhik, *Table of Integrals, Series* and Products (Academic, New York, 1965), Sec. 9.2.
- [16] *Handbook of Mathematical Functions*, edited by M. Abramowitz and I.A. Stegun (Dover, New York, 1972), p. 319.
- [17] The following parameters of $Cu₂O$ have been used: $M_r = 2.7m_0$, $D = -1.38$ eV, $v_s = 4.5 \times 10^5$ cm/s, and $\rho = 6.11$ $g/cm³$. For the numerical calculations of Figs. 1–4, the exciton concentration $n_0 = 8.7 \times 10^{16}$ cm⁻³ ($T_c = 2.135$ K) and the initial distribution $N_e(t=0)$ is a Gaussian with a central energy of 1.237 meV and width of 0.186 meV. The characteristic scattering time $\tau_{\rm sc}$ = 5.2 ns and the energy of the partner state $e_0 = 2M_x v_s^2 \approx 0.62 \text{ meV} \gg k_B T_c \approx 0.18 \text{ meV}.$
- [18] H. Haken, Rev. Mod. Phys. 47, 67 (1975).
- [19] E. Levich and V. Yakhot, Phys. Rev. B 15, 243 (1977); J. Phys. A 11, 2237 (1978).
- [20] Yu. Kagan, in *Bose-Einstein Condensation*, edited by A. Griffin, D.W. Snoke, and S. Stringari (Cambridge University Press, Cambridge, 1995), p. 202; H.T.C. Stoof, *ibid.*, p. 226.
- $[21]$ C. Ell, A.L. Ivanov, and H. Haug (unpublished).